Math, asked by adityachokar501, 3 months ago

21. If not root of the quadratic equation 2x + x - 6 = 0 is 2, find the value of k. Also, find the other root​

Answers

Answered by alonesoul21
19

\underline{\bf{Correct \: Question \: :-}} \\

If root of the quadratic equation 2x² + kx - 6 = 0 is 2, find the value of k. Also, find the other root.

Methods for doing such questions :

\bulletBy Using Splitting Middle Term Method

\bulletBy Using Quadratic Formula

Now, Firstly

Steps for Splitting Middle Term Method :

★ ➤ We have to split the middle term of equation, so that their sum is equal to the middle term and their product is equal to the product of coefficient of x² and constant term.

Let's solve it :

\dashrightarrow\:\:\sf  2 \times ( 2 )^{2} + k × 2 - 6 = 0 \\

\dashrightarrow\:\:\sf  8 + 2k - 6 = 0 \\

\dashrightarrow\:\:\sf  2 + 2k = 0 \\

\dashrightarrow\:\:\sf k = \dfrac{-2}{2} \\

\dashrightarrow\:\:\sf k = - 1 \\

\boxed{ \bf{k =  - 1}}\\

Now , By using Splitting method :

\rightarrow\:\:\sf 2x^{2} - x - 6 = 0 \\

\rightarrow\:\:\sf 2x^{2} - ( 4 - 3 )x - 6 = 0 \\

\rightarrow\:\:\sf 2x^{2} - 4x + 3x - 6 = 0 \\

\rightarrow\:\:\sf 2x ( x - 2 ) + 3 ( x - 2 ) = 0 \\

\rightarrow\:\:\sf x - 2 = 0 \\

\rightarrow\:\:\sf x = 2 \\

or

\rightarrow\:\:\sf 2x + 3 = 0 \\

\rightarrow\:\:\sf x = \dfrac{-3}{2} \\

Hence, The other root is :

\boxed{\therefore \sf{x =  \dfrac{-3}{2} }}\\

____________________________

Alternate Method :

\large\mathtt{|| \: Quadratic \; \; Formula \: ||}  \\

\;\tt{\rightarrow\;\; \dfrac{-b\:\pm\:\sqrt{b^{2}\:-\:4ac}}{2a}}

Here,

  • 2x² - x - 6 = 0

By comparing it with the general form of quadratic equation which is ,

  • \boxed{\boxed{\sf{ax^{2} + bx + c = 0}}} \\

⠀⠀\dag a = 2

⠀⠀\dag b = (-1)

⠀⠀\dag c = (-6)

Finding the Discriminant first, which is nothing but :

\bigstar {\sf { D = b^{2} - 4 ac}} \\ \\

Substituting the respective values here, we get :-

\implies\sf D = b^{2} - 4 ac \\ \\

\implies\sf D = (-1)^{2} - 4 \times 2 \times (-6) \\ \\

\implies\sf D = 1 - 8 \times (-6) \\ \\

\implies\sf D = 1 + 48 \\ \\

\rightarrow D = 49

Plugging the values now ,

\;\sf{\rightarrow\;\; \dfrac{-b\:\pm\:\sqrt{b^{2}\:-\:4ac}}{2a}} \\ \\

\;\sf{\rightarrow\;\; \dfrac{- (-1) \:\pm\:\sqrt{49}}{2(2)}} \\ \\

\;\sf{\rightarrow\;\; \dfrac{1 \:\pm\:\sqrt{49}}{4}} \\ \\

\;\sf{\rightarrow\;\; \dfrac{1 \:\pm\:{7}}{4}} \\ \\

Now,

\;\sf{\rightarrow\;\; \dfrac{1 \: + \:{7}}{4}} \\ \\

\;\sf{\rightarrow\;\; \dfrac{{8}}{4}} \\ \\

\;\sf{\rightarrow\;\; 2 } \\ \\

Then,

\;\sf{\rightarrow\;\; \dfrac{1 \: - \:{7}}{4}} \\ \\

\;\sf{\rightarrow\;\; \dfrac{{-6}}{4}} \\ \\

\;\sf{\rightarrow\;\;  \dfrac{{-3}}{2}} \\ \\

Hence, The other root is :

\boxed{\therefore \sf{x =  \dfrac{-3}{2} }}\\

_________________________

\underline{\underline{\maltese\:\: \textbf{\textsf{Quadratic \: Equation}}}}

\bigstar If p(x) is a quadratic polynomial , then p(x) = 0 is called a quadratic equation .

\underline{\underline{\maltese\:\: \textbf{\textsf{Roots \: of \: Quadratic \: Equation}}}}

\bigstarLet p(x) = 0 be a quadratic equation , then the zeros of the polynomial p(x) are called the roots of the equation p(x) = 0.

⠀⠀\underline{\underline{\maltese\:\: \textbf{\textsf{General \: form \: of \: Quadratic \: Equation}}}}

⠀⠀⠀⠀⠀⠀\underline{\bf{ax^{2} + bx + c = 0}}

Where,

\bulleta , b and c are real numbers respectively.

_______________________

Answered by EuphoricCookie
2

Correct Question:

If one root of the quadratic equation 2x² + kx - 6 = 0 is 2, find the value of k. Also find the other root.

Solution:

Let us assume that the other root of the given quadratic equation is m

then two roots of the equation are: 2 and m

Comparing 2x² + x - 6 = 0 with ax² + bx + c = 0

we will get, a = 2, b = k, c = -6

Now we know the relation between roots and coefficient of the quadratic equation, so

Sum of roots = 2 + m = -b/a = -k/2

so, 4 + 2m = -k ___equation(1)

also,

product of roots = 2m = c/a = -6/2 = -3

so, 2m = -3 ___equation(2)

putting value of 2m from equation(2) into equation(1)

➡ 4 + 2m = -k

➡ 4 - 3 = -k

k = -1

and putting value of k in equation(1)

➡ 4 + 2m = -k

➡ 4 + 2m = -(-1)

➡ 4 + 2m = 1

➡ 2m = -3

m = -3/2

so, value of k is -1 and other root is -3/2.

Similar questions