Math, asked by aryanpanwar28, 10 months ago

21. If the sides of a triangle are
produced in order, show that the
sum of the exterior angles so
formed is equal to four right
angles.​

Answers

Answered by Cynefin
43

 \large{ \bold{ \underline{ \underline{ \star{ \red{Question....}}}}}}

 \large{ \mathrm{ \bullet{if \: the \: sides \: of \: a \: triangle \: are \: produced \: in \: order \: show \: that}}}  \\  \large{ \mathrm{the \: sum \: of \: the \: exterior \: angles \: so \: formed \: is \: }} \\  \large{ \mathrm{equal \: to \: four \: right \: angles...}}

 \large{ \bold{ \star{ \underline{ \underline{ \green{Solution...}}}}}}

 \large{ \mathrm{ \star{ \underline{ \underline{ \pink { to \: prove}}}}}} \\  \\  \large{ \mathrm{ \dag{ \: sum \: of \: exterior \: angles = 360}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \large{ \bold{ \star{ \underline{ \underline{ \red{Proof...}}}}}}

 \large{ \mathrm{ \underline{ \purple{ \star{ \:  \: refer \: to \: the \: attachement...}}}}}

 \large{ \mathrm{as \: we \: know \: that...}} \\  \large{ \mathrm{ \boxed{ \red{sum \: of \: all \: angles \: of \: a \: triangle = 180}}}} \\   \large{ \mathrm{.....equation \: (1)}} \\ \\ :   \large{ \mathrm{ \implies{ <  \alpha  +  <  \beta  +  <  \gamma  = 180}}} \\ \\    \large{ \mathrm{  \mapsto{exterior \: angle \: of \:  <  \alpha  = 180 -  \alpha }}} \\  \\  \large{ \mathrm{ \mapsto{ exterior \: angle \: of \:  <  \beta  = 180 -  \beta }}} \\  \\  \large{ \mathrm{ \mapsto{exterior \: angle \: of \:  <  \gamma  = 180 -  <  \gamma }}} \\  \\  \large{ \mathrm{ \green{then \: sum \: of \: exterior \: angles \: of  \: triangle}}}  \\ \\  \large{ \mathrm{  = (180 -  \alpha ) + (180 -  \beta ) + (180 -  \gamma )}} \\  \\  \large{ \mathrm{ = 180 -   < \alpha  + 180 -   < \beta  + 180 -  <  \gamma }} \\  \\  \large{ \mathrm{ \boxed{ \green{ = 180 + 180 + 180 - ( <  \alpha   +  \beta   +  \gamma) }}}} \\   \large{ \mathrm{....equation \: (2)}} \\  \\  \sf{ \dag{ \underline{ \underline{ \red{putting \: equation \: (1) \: in \: (2)}}}}} \\  \\  \large{ \mathrm{ = 540 - 180}} \\  \\  \large{ \mathrm{ \boxed{ \purple{ = 360}}}} \\  \\  \large{ \therefore{ \pink{ \mathrm{hence \: proved...}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions