Math, asked by Anonymous, 5 hours ago

21. Ifa and ß are zeroes of the quadratic polynomial x2 - 6x + a the value of 'd', if 30 + 2B = 20 is - 12 (a) True (b) False (c) Can't say (d) Partially True/False​

Answers

Answered by hdhdndgdh
1

Answer:

it is false

hope it is right mark me brainliest

Answered by mathdude500
5

Appropriate Question :-

If α and β are zeroes of the quadratic polynomial x^2 - 6x + a, then the value of a, if 3α + 2β = 20 is - 12 is

(a) True

(b) False

(c) Can't say

(d) Partially True/False

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha,  \beta \: are \: zeroes \: of \:  {x}^{2} - 6x + a

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm\implies \: \alpha  + \beta  =  - \dfrac{( - 6)}{1}

\rm\implies \: \alpha  + \beta  =  6

\rm\implies \: \beta  =  6 -  \alpha  -  -  -  - (1)

Also, given that

\rm :\longmapsto\:3 \alpha  + 2 \beta  = 20

\rm :\longmapsto\:3 \alpha  + 2 (6 -  \alpha )  = 20

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (1) \bigg\}}

\rm :\longmapsto\:3 \alpha  + 12 - 2 \alpha  = 20

\rm :\longmapsto\: \alpha    = 20 - 12

\rm\implies \:\boxed{\tt{  \:  \:  \alpha  = 8 \:  \: }} -  -  - (2)

On substituting equation (2) in (1), we get

\rm :\longmapsto\: \beta  = 6 - 8

\rm\implies \:\boxed{\tt{  \:  \:  \beta  =  - 2 \:  \: }} -  -  -  - (3)

Also, We know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm\implies \: \alpha  \beta  = \dfrac{a}{1}

\rm\implies \: \alpha  \beta  = a

\bf\implies \:a = 8( - 2) =  - 16

\rm\implies \:\boxed{\tt{  \:  \: a \:  =  \:  -  \: 16 \:  \: }}

So, option (b) is Correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

For Cubic Polynomial

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  +  \beta \gamma   +  \gamma  \alpha  =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions