21. In figure, If AB II CD, EF is perpendicular to CD, ∠FED = 90⁰
∠GED = 116⁰, then find ∠AGE, ∠ GEF and∠ FGE .
Answers
∠AGE = 116°
∠ GEF = 26°
∠ FGE = 64°
Explanation:
Given:
- AB║CD
- EF║CD
- ∠FED = 90°
- ∠GED = 116°
As
- AB║CD
Then
∠GED = ∠AGE (Alternate Interior angles)
∠FGE = ∠GEC (Alternate Interior angles)
Therefore,
∠AGE = ∠GED = 116° each
Now,
∠GED + ∠GEC = 180° [Linear pair]
⇒ 116 + ∠GEC = 180°
⇒ ∠GEC = 180° - 116°
⇒ ∠GEC = 64°
So,
∠GEC = ∠FGE = 64°
----
Also,
∠GEF + ∠GEC = 90° [As EF ⊥ CD]
⇒ ∠GEF + 64 = 90
⇒ ∠GEF = 90 - 64
⇒ ∠GEF = 26°
Answer:
∠AGE = 116°
∠ GEF = 26°
∠ FGE = 64°
Explanation:
Given:
AB║CD
EF║CD
∠FED = 90°
∠GED = 116°
As
AB║CD
Then
∠GED = ∠AGE (Alternate Interior angles)
∠FGE = ∠GEC (Alternate Interior angles)
Therefore,
∠AGE = ∠GED = 116° each
Now,
∠GED + ∠GEC = 180° [Linear pair]
⇒ 116 + ∠GEC = 180°
⇒ ∠GEC = 180° - 116°
⇒ ∠GEC = 64°
So,
∠GEC = ∠FGE = 64°
----
Also,
∠GEF + ∠GEC = 90° [As EF ⊥ CD]
⇒ ∠GEF + 64 = 90
⇒ ∠GEF = 90 - 64
⇒ ∠GEF = 26°