Math, asked by samikshya12, 7 months ago


21.
Prove the following identity:
sinA/secA+tanA-1 + cosA/cosecA+cotA-1 = 1​

Answers

Answered by Aryanshinde1010
2

Step-by-step explanation:

The function is

\dfrac{\sin A}{\sec A+\tan A-1}+\dfrac{\cos A}{cosec A+cot A-1}=1

secA+tanA−1

sinA

+

cosecA+cotA−1

cosA

=1

We need to prove the left hand side equal right hand side

Using left hand side

=\dfrac{\sin A}{\sec A+\tan A-1}+\dfrac{\cos A}{cosec A+cot A-1}=

secA+tanA−1

sinA

+

cosecA+cotA−1

cosA

=\dfrac{\sin A}{\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}-1}+\dfrac{\cos A}{\dfrac{1}{\sin A}+\dfrac{\cos A}{\sin A}-1}=

cosA

1

+

cosA

sinA

−1

sinA

+

sinA

1

+

sinA

cosA

−1

cosA

=\dfrac{\sin A}{\dfrac{1+\sin A-\cos A}{\cos A}}+\dfrac{\cos A}{\dfrac{1+\cos A-\sin A}{\sin A}}=

cosA

1+sinA−cosA

sinA

+

sinA

1+cosA−sinA

cosA

=\dfrac{\sin A\times\cos A}{1+\sin A-\cos A}+\dfrac{\cos A\times\sin A}{1+\cos A-\sin A}=

1+sinA−cosA

sinA×cosA

+

1+cosA−sinA

cosA×sinA

=\sin A\cos A(\dfrac{1}{1+\sin A-\cos A}+\dfrac{1}{1+\cos A-\sin A})=sinAcosA(

1+sinA−cosA

1

+

1+cosA−sinA

1

)

=\sin A\cos A(\dfrac{(1+\cos A-\sin A)+(1+\sin A-\cos A)}{(1+\cos A-\sin A)(1+\sin A-\cos A)})=sinAcosA(

(1+cosA−sinA)(1+sinA−cosA)

(1+cosA−sinA)+(1+sinA−cosA)

)

=\sin A\cos A(\dfrac{2}{(1+\cos A-\sin A)(1+\sin A-\cos A)})=sinAcosA(

(1+cosA−sinA)(1+sinA−cosA)

2

)

=\sin A\cos A(\dfrac{2}{1+\sin A-\cos A+\cos A+\sin A\cos A-\cos^{2}A-\sin A-\sin^{2}A+\cos A\sin A})=sinAcosA(

1+sinA−cosA+cosA+sinAcosA−cos

2

A−sinA−sin

2

A+cosAsinA

2

)

=\sin A\cos A(\dfrac{2}{1-(\sin^{2}A+\cos^{2})+2\cos A\sin A})=sinAcosA(

1−(sin

2

A+cos

2

)+2cosAsinA

2

)

Here, \sin^{2}A+\cos^{2}A=1sin

2

A+cos

2

A=1

=\sin A\cos A(\dfrac{2}{1-1+2\cos A\sin A})=sinAcosA(

1−1+2cosAsinA

2

)

=\sin A\cos A\times\dfrac{1}{\cos A\sin A}=sinAcosA×

cosAsinA

1

=1=1

Similar questions