Math, asked by devendrajatav, 10 months ago

21. Show that 5V6 is an irrational number.​

Answers

Answered by naswthar2003
4

Answer:

Step-by-step explanation:

Let 5√6 be a rational number, which can be expressed as a/b, where b≠0 and a and b are the integers

⇒ 5√6 = a/b

⇒ √6 = a/5b

⇒ √6 = rational

But √6 is an irrational number.

Thus, assumption is wrong.

Hence, 5√6 is irrational number.

Answered by agilandhanasekaran
3

Step-by-step explanation:

                                                                                                            a

Let us assume, to the contrary, that 5\sqrt 6 rational. Then, 5\sqrt 6 =  b

 where (b≠0) and a & b are co-prime positive integers.

Then,

             5\sqrt6 = a

                         b      

                \sqrt6 =  a  

                          5b

 Since 3,a,b are integers ,  a     is rational.

                                               5b

So, \sqrt{6 is also rational                         (     \sqrt6 =  a      )

                                                                                5b

               

But this contradicts the fact that \sqrt6\\  is irrational.

This contradiction has arisen because of our incorrect assumption that

5\sqrt6   is rational.

Hence, our assumption is wrong, 5\sqrt6\\ is irrational.

               Hence proved.

                                                                 

Similar questions