Math, asked by yaminidurgavattikuti, 3 months ago

21. The number of road accidents reported in a city in the months of a
year are: 56, 28, 90, 15, 73, 81, 60, 23, 45, 36, 51, 77. Calculate the
mean and range for the given data.

Attachments:

Answers

Answered by Anonymous
31

\sf\purple{Answer}

\sf\underline\purple{Given:-} The road accidents reported months of a year are

  • 56, 28, 90, 15, 73 , 81 , 60 , 23 , 24 , 36 , 51 ,77

\sf\underline\purple{To\: find :- }

  • Mean of data , Range of data

\sf\underline\purple{Formulae\:to\:know}

Mean = \sf\dfrac{Sum\:of\:observations}{No\:of\:observations}

Range = Highest value - Lowest value

________________________________________

\huge\bf{Solution}

\sf\underline\purple{Finding\:mean}

Sum of observations = 56+ 28+ 90+ 15+73 + 81 + 60+ 23 + 45, + 36 + 51+ 77.

Sum of observations = 635

No.of observations = 12

Mean = \sf\dfrac{Sum\:of\:observations}{No\:of\:observations}

Mean = \sf\dfrac{635}{12}

\sf\purple{Mean} = 52.91

\sf\underline\purple{Finding\:Range}

Highest value in data = 90

Lowest value in data = 15

Range = Highest value - Lowest value

Range = 90-15

\sf\purple{Range} = 75

So, mean of data is 52.91, Range of data is 75

Answered by Sen0rita
34

Solution :

 \:  \:

Here

  • Sum of observations = 56 + 28 + 90 + 15 + 73 + 81 + 60 + 23 + 45 + 36 + 51 + 77
  • Number of observations = 12

 \:

For finding the mean of the given data we've to find the ratio of sum of observations to the number of observations.

 \:  \:

 \star\underline{\boxed{\sf\pink{Mean =  \frac{sum \: of \: observations}{number \: of \: observations} }}}

 \:  \:

 \mathfrak{ \underline{ \bigstar \: substituting \: the \: values \:  : }}

 \:  \:

\sf:\implies \: mean =  \dfrac{sum \: of \: observations}{number \: of \: observations}

 \:

\sf:\implies mean \:  =  \dfrac{56 + 28 + 90 + 15 + 73 + 81 + 60 + 23 + 45 + 36 + 51 + 77}{12}

 \:

 \sf :  \implies \: mean =  \dfrac{635}{12}

 \:

 \sf :  \implies \: \underline{\boxed{\mathfrak\purple{mean = 52.91}}} \:  \bigstar

 \:

\sf\therefore{\underline{Hence, \: the \: mean \: of \: the \: observation \: is \:  \bold{52.91}.}}

⠀⠀⠀⠀⠀⠀____________________

 \:  \:

Now we'll find the range of the data. For finding the range of the given data, we'll subtract the minimum value from the maximum value.

 \:  \:

Here

 \:

  • Maximum value = 90
  • Minimum value = 15

 \:  \:

 \star \: \underline{\boxed{\sf\pink{Range = maximum \: value \:  -  \: minimum \: value}}}

 \:  \:

 \mathfrak {\underline{ \bigstar \: substituting \: the \: values \:  : }}

 \:

 \sf :\implies \: Range = maximum \: value \:   -  \: minimum \: value

 \:

 \sf :\implies \: Range =90 - 15

 \:

 \sf :\implies \: \underline{\boxed{\mathfrak\purple{Range =75}}} \:  \bigstar

 \:

\sf\therefore{\underline{Hence, \: the \: range \: of \: the \: data \: is \:  \bold{75}.}}

⠀⠀⠀⠀⠀⠀____________________

Similar questions