21.) Two vectors A and B have precisely equal magnitudes. If magnitude
A + B to be larger than the magnitude of A - B by a factor n, the ane
between them is
1) 2 tan-(1/n) 2) tan-|(1/n) 3) tan-(1/2n) 4) 2tan" (1/2n)
Answers
Answered by
9
Answer:
α = Tan⁻¹(2n/(n² - 1))
Explanation:
Two vectors A and B have precisely equal magnitudes.
Let say Magnitude of A & B = K
let say Angle between them = α
magnitude of A + B = √A² + B² + 2ABCosα
magnitude of A + B = √K² + K² + 2KKCosα
magnitude of A + B = √2K²( 1 + Cosα)
magnitude of A - B = √A² + B² - 2ABCosα
magnitude of A - B = √K² + K² - 2KKCosα
magnitude of A - B = √2K²( 1 - Cosα)
√2K²( 1 + Cosα) = n √2K²( 1 - Cosα)
Squaring both sides
=> 1 + Cosα = n² (1 - Cosα)
=> Cosα (1 + n²) = n² - 1
=> Cosα = (n² - 1)/(n² + 1)
=> Secα = (n² + 1)/ (n² - 1)
Sec²α = Tan²α + 1
=> Tan²α = ((n² + 1)/ (n² - 1))² - 1
=> Tan²α = ((n² + 1)/ (n² - 1) + 1)((n² + 1)/ (n² - 1) - 1)
=> Tan²α = (2n²)(2)/ (n² - 1)²
=> Tanα = 2n/(n² - 1)
=> α = Tan⁻¹(2n/(n² - 1))
Similar questions