21. Write the quadratic polynomial, whose sum of zeroes is – 3 and sum of the squares of zeroes is 17.
Answers
Step-by-step explanation:
let the zeros of the quadratic polynomial be x and y and quadratic polynomial be ax^2+bx+c
so, x+y=-3----------(¡)
x^2+y^2=17---------(¡¡)
(¡)=>x=-3-y
substituting the value in (¡) in equation (¡¡),we have:
(-3-y)^2+y^2=17
=>9+y^2+6y+y^2=17
=>2y^2+6y+9-17=0
=>2y^2+6y-8=0
=>(2y-2)(y+4)=0
so, 2y-2=0 or y+4=0
=>y=2/2 or y=-4
so, y=1or-4
now, substituting y=1in (¡)
x+1=-3
=>x=-4
again, substituting y=-4 in (¡)
x-4=3
=>x=7
therefore, zeroes of polynomial are 1and-3 or-4 and 7
Step
Let a and b are the roots.
According to the question:
a + b = - 3
⇒ a^2 + b^2 = 17
⇒ a^2 + b^2 + 2ab - 2ab = 17
⇒ ( a + b )^2 - 2ab = 17
⇒ ( - 3 )^2 - 2ab = 17
⇒ 9 - 2ab = 17
⇒ 9 - 17 = 2ab
⇒ - 8 = 2ab
⇒ - 4 = ab = product of roots.
Hence,
Req. pol. is x^2 - ( sum of roots )x + product of roots
⇒ x^2 - ( a + b )x + ab
⇒ x^2 - ( - 3 )x + ( - 4 )
⇒ x^2 + 3x - 4