21.
X = 2- √3 then find the value of (x+1/x)^3
Answers
Answered by
0
Step-by-step explanation:
Given :
x = 2 + \sqrt{3}
To find :
x + \frac{1}{x}
Solution :
x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 - \sqrt{3}
Now,
x + \frac{1}{x} \\ \\ = 2 + \sqrt{3} + 2 - \sqrt{3} \\ \\ = 2 + 2 \\ \\ = 4
only i given the answer.
please mark me as brainliest.
upto now i did not get 1 brainliest also
Answered by
0
Answer:
Step-by-step explanation:
Attachments:
Similar questions
Math,
5 months ago
English,
5 months ago
Biology,
11 months ago
Social Sciences,
11 months ago
Business Studies,
1 year ago