Math, asked by dranjalisinghcom, 8 months ago

216 Factorize using suitable identity :
4x2 + 3 y2 +z2 – 4V3xy – 273yz + 4xz

Attachments:

Answers

Answered by amankumaraman11
0

We have,

  • To factorise :   \small \rm {4x}^{2}  +  {3y}^{2}  +  {z}^{2}  - 4 \sqrt{3} xy - 2 \sqrt{3} yz + 4xz

If,

  • An expression is in form of    \small \rm {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ac , then, it can be factorised as  \small \rm {(a + b + c)}^{2}

Therefore,

 \to \small\rm {4x}^{2}  +  {3y}^{2}  +  {z}^{2}  - 4 \sqrt{3} xy - 2 \sqrt{3} yz + 4xz \\  \to \small \rm {(2x)}^{2}  +  { \big( \sqrt{3}y  \big)}^{2}  +  {(z)}^{2}   +  2 \big( - 2 \sqrt{3} xy  -   \sqrt{3}yz  +  2xz  \big) \\  \to \large \rm   {(2x  -   \sqrt{3} y +z )}^{2}

Hence,

  • Obtained Factorised terms are (2z - √3y + z)(2z - √3y + z)
Similar questions