Physics, asked by pulkitbhai001, 9 months ago

22.
A bullet fired into a fixed target loses half of its velocity after
penetrating 3 cm. How much further it will penetrate before
coming to rest assuming that it faces constant resistance to
motion
[AIEEE 2005]
(a) 1.5 cm
(b) 1.0 cm
(c) 3.0 cm
(d) 2.0 cm​

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Left\:penetration=1\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies First \: penetrating \: length(s_{1}) = 3 \: cm \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies    left \: Penetration \: length \: before  \: it \: comes \: to \: rest ( s_{2} =?

• According to given question :

 \tt \circ \: Let \: Initial \: velocity   = v\:m/s \\  \\  \tt \circ \:Left \: velocity \: after \:  s_{1} \: penetration =  \frac{v}{2}  \:m/s \\  \\  \tt \circ \:  s_{1} =  \frac{3}{100}  = 0.03 \: m \\  \\  \bold{As \: we \: know \: that} \\    \tt:  \implies  {v}^{2}  =  {u}^{2} + 2as \\  \\ \tt:  \implies   \bigg(\frac{v}{2} \bigg)^{2}  =  {v}^{2}   + 2a s_{1} \\  \\  \tt:  \implies  \frac{ {v}^{2} }{4}  =  {v}^{2}  + 2 \times a \times 0.03 \\  \\ \tt:  \implies   \frac{ {v}^{2} }{4}  -  {v}^{2}  = 0.06 \times a \\  \\ \tt:  \implies   \frac{ -  3{v}^{2} }{4}  = 0.06 \times a \\  \\ \tt:  \implies  a =  \frac{ - 3 {v}^{2} }{4 \times 0.06}  \\\\ \tt:  \implies  a =  \frac{ - 25 {v}^{2} }{2}\:m/s^{2}  -  -  -  -  - (1)

\tt\circ\:Initial\:velocity=v\:m/s \\\\\tt \circ \: Final \: velocity = 0 \: m/s\\  \\ \bold{As \: we \: know \: that} \\ \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as \\  \\ \tt:  \implies   {0}^{2}  =  {v}^{2}  + 2 \times  \frac{ - 25 {v}^{2} }{2}  \times s \\  \\ \tt:  \implies   -  {v}^{2}  =  - 25 {v}^{2}  \times s \\  \\ \tt:  \implies  s =  \frac{ -  {v}^{2} }{ - 25 {v}^{2} }  \\  \\ \tt:  \implies  s =  \frac{1}{25}  \\  \\  \green{\tt:  \implies s = 0.04 \: m} \\  \\  \bold{For \: left \: penetration(s_{2})} \\ \tt:  \implies  s =  s_{1} +  s_{2} \\  \\ \tt:  \implies 0.04 = 0.03 +  s_{2} \\  \\ \tt:  \implies   s_{2} = 0.04 - 0.03 \\  \\  \green{\tt:  \implies  s_{2} = 0.01 \: m = 1 \: cm} \\  \\  \green{\tt  \therefore Left \: penetration \: before  \: it \: come \: to \: rest \: is \: 1 \: cm}

Answered by BrainlyElon
6

\orange{\bigstar} Answer \green{\bigstar}

For 1st 3 cm :

Initial velocity = u cm/s

Final velocity = \rm \dfrac{u}{2} cm/s

Distance , s = 3 cm

Acceleration = a cm/s²

Apply 3rd equation of motion ,

\to \rm \left(\dfrac{u}{2}\right)^2-u^2=2a(3)\\\\\to \rm \dfrac{u^2}{4}-u^2=6a\\\\\to \rm -\dfrac{3u^2}{4}=6a\\\\\to \rm a=-\dfrac{u^2}{8}

For remaining distance :

Initial velocity = \rm \dfrac{u}{2} cm/s

Final velocity = 0 m/s

Acceleration = \rm -\dfrac{u^2}{8}\ cm/s^2

Distance = x cm

Apply 3rd equation of motion ,

\to \rm v^2-u^2=2as\\\\\to \rm (0)^2-\left(\dfrac{u}{2}\right)^2=2\left(-\dfrac{u^2}{8}\right)x\\\\\to \rm 0-\dfrac{u^2}{4}=-\dfrac{u^2}{4}x\\\\\to \rm x\ \times  \cancel{\left(-\dfrac{u^2}{4}\right)}=\cancel{-\dfrac{u^2}{4}}\\\\\to \rm x=1\ cm\ \; \bigstar

So , It will penetrate 1 cm before coming to rest

Option (b) is correct

Attachments:
Similar questions