Physics, asked by rp3056129, 8 days ago

22 Example 10.53 Calculate the escape velocity from the surface of a planet of mass 14.8 x 10 kg. It is given that radius of the e planet is 3.48 x 10⁶ m. 22​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Explanation:

to \: find \:  :  \\ escape \: velocity \: of \: planet \: (Vp) \\  \\ given :  \\  \\ mass \: of \: planet \: (M) = 14.8 \times 10 {}^{22}  \: kg \\  \\ radius \: of \: planet \: (R) = 3.48 \times 10 {}^{6}  \: m \\  \\ G = 6.67 \times 10 {}^{ - 11}  \:  \frac{N.m {}^{2} }{kg {}^{2} }

so \: we \: know \: that \\  \\ escape \: velocity =  \sqrt{ \frac{2GM}{R} }  \\  \\ thus \: then \: accordingly \\  \\ Vp =  \sqrt{ \frac{2GM}{R} }  \\  \\  =  \sqrt{ \frac{2 \times 6.67 \times 10 {}^{ - 11} \times 14.8 \times 10 {}^{22}  }{3.48 \times 10 {}^{6} } }  \\  \\  =   \sqrt{ \frac{2 \times 6.67 \times 14.8 \times 10 {}^{ - 11}  \times 10 {}^{22} \times 10 {}^{ - 6}  }{3.48} }  \\  \\  =  \sqrt{ \frac{197.432 \times 10 {}^{ - 11 + 22 - 6} }{3.48} }  \\  \\  =   \sqrt{ \frac{197.432 \times 10 {}^{5} }{3.48} }  \\  \\  =  \sqrt{56.733 \times 10 \times 10 {}^{4} }  \\  \\  =   \sqrt{567 .33 \times 10 {}^{4} }  \\  \\  = 23.8186 \times 10 {}^{2}  \\  \\  = 2.38186 \times 10 \times 10 {}^{2}  \\  \\ Vp = 2.38186 \times 10 {}^{3}  \:  \:  \frac{km}{s}

Similar questions