Math, asked by zainmd9320, 9 months ago

22.Find the area of the segment shaded in the figure in which PQ = 12cm.,PR = 5cm and QR is the diameter of the circle with center 'O'

Answers

Answered by Anonymous
22

\large{\underline{\bf{\pink{Answer:-}}}}

Area of shaded region = 2038/56 cm²

\large{\underline{\bf{\blue{Explanation:-}}}}

Area of shaded region

= area of semicircle - area of ∆PQR.

\large{\underline{\bf{\green{Given:-}}}}

PQ = 12cm

PR = 5cm

QR is the diameter of the circle.

\large{\underline{\bf{\green{To\:Find:-}}}}

we need to find the area of shaded region.

\huge{\underline{\bf{\red{Solution:-}}}}

It is given that QR is a diameter,

So, it forms a semicircle.

we know that that the angle in a semicircle is a right angle.

So , \angle RPQ = 90\degree

So, , \angle RPQ is right angled triangle.

By using Pythagoras theorem:-

(Hypotenuse)² = (height)² + (base)²

 :\implies\:(QR)^2=(PQ)^2+(PR)^2

 :\implies\:(QR)^2=(12)^2+(5)^2

 :\implies\:(QR)^2=144+25

 :\implies\:QR=\sqrt{169}

 :\implies\:\bf\:QR=13cm

So, QR = 13cm

Then , Radius = 13/2 cm

{\underline {\boxed{\bf{\:Area\:of\: circle=\pi\: r^2}}}}

{\underline{\boxed {\bf{\:Area\:of\: semicircle=\frac{1}{2}\times\: \pi\:r^2}}}}

 :\implies\:\frac{1}{2}\times\frac{22}{7}\times(\frac{13}{2})^2

 :\implies\:\frac{1}{2}\times\frac{22}{7}\times\frac{169}{4}

 :\implies\:\frac{3718}{56}cm^2

Area of PQR :-

 \bf\:\frac{1}{2}\times\:Base\times\: Height

 :\implies\:\frac{1}{2}\times\:PQ\times\:PR

 :\implies\frac{1}{\cancel{2}}\times{\cancel{12}}\times\:5

 :\implies\:\bf 30cm^2

Now,

Area of shaded region

= area of semicircle - area of PQR

 :\implies\:\frac{3718}{56}-30

 :\implies\:\frac{3718-1680}{56}

 :\implies\:\bf\frac{2038}{56}cm^2\\

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Answered by Mano020905
2

Answer:

cu IC t on no fb5odjxnypnoxn d TX

Similar questions