Math, asked by vibhah7998, 6 days ago

22) for the function y = sin²(x²) is_ (a) 4x Sin(x²) Cos(x²) b) 4x Sin(x²) c) 4 Sin(x²) Cos(x²) d 4x Sin(x²) Cos(x)

Answers

Answered by Anonymous
20

  \\   {\bigstar} \:  \underline{  \large\rm{Question :-} } \\

  • For the function y =  \sf \:  { \sin}^{2} ( {x}^{2} ) is ?

  \\   {\bigstar} \:  \underline{  \large\rm{AnsWer :-} } \\

In this question, We have to use chain rule

So, Let's assume t =  \sf \:  { \sin}^{2} ( {x}^{2} )

Now, Differentiating with respect to x,

  \:  \\ \sf \:  \frac{dt}{dx}  = 2 \sin( {x}^{2} ) \times  \frac{d( \sin( {x}^{2})) }{dx}

  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \implies \: \sf \:  \frac{dt}{dx}  = 2 \sin( {x}^{2} ) \times  \cos( {x}^{2} ) \frac{d({x}^{2}) }{dx}  \\

  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \implies \: \sf \:  \frac{dt}{dx}  = 2 \sin( {x}^{2} ) \times  \cos( {x}^{2} ) \times  2x  \\

  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \implies \: \sf \:  \frac{dt}{dx}  =2x \times  2 \sin( {x}^{2} ) \times  \cos( {x}^{2} )   \\

  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \implies \: \sf \:  \frac{dt}{dx}  =4x   \sin( {x}^{2} )   \cos( {x}^{2} ) \  \\

 \\  \sf \: Hence,   \: Option \:   \bold A  \: is correct \: .

  \\   {\bigstar} \:  \underline{  \large\rm{More  \: Information  :-} } \\

  • The chain rule provides us a technique for determining the derivativebof composite functions.
  • It is applicable to the number of functions that make up the composition.

Similar questions