Math, asked by dellsai2003, 1 month ago

22. If a:b = 9:5 and b:c= 7:4, then a:b:c = ?
•14:10:17
•35:63:20
•63:35:20
•20:36:63​

Answers

Answered by abhi569
46

Answer:

63 : 35 : 20

Step-by-step explanation:

a : b = 9 : 5 & b : c = 7 : 4

For the ratio a : b : c, b must be same in a:b and b:c. For that:

Multiply & divide RHS of a : b by 7 & that of b : c by 5.

a : b = 9/5 = (9*7)/(5*7) = 63/35

b : c = 7/4 = (7*5)/(4*5) = 35/20

As b is now same :

a : b : c = 63 : 35 : 20

Answered by Anonymous
165

Answer:

  \Large \underline \red{\sf \pmb{Given}}

  • ➛ A:B = 9:5
  • ➛ B:C = 7:4

 \Large  \underline\red {\sf  \pmb{To \:  Find }}

  • ➛ A:B:C

 \Large \underline \red{ \sf \pmb{Using  \: Formula }}

 \underline{\boxed{\sf{A:B:C=(r\times t):(s\times t):(s\times u)}}}

Where

  • ➟ R = A
  • ➟ T = B
  • ➟ U = C

  \Large \underline \red {\sf \pmb{Solution}}

  \pink\bigstar \underline \frak{ \pmb{Here}}

 \implies\sf{A:B=9 : 5  }

  \implies\sf{B:C = 7 : 4  }

\pink\bigstar\underline{ \frak{ \pmb{According  \: to  \: the \:  question}}}

{ \implies\sf{A:B:C=(r\times t):(s\times t):(s\times u)}}

  • Substituting the given values

{ \implies\sf{A:B:C=(9\times 7):(5\times 7):(5\times 4)}}

{ \implies\sf{A:B:C=(63):(35):(20)}}

{ \implies\bf{A:B:C=63:35:20}}

\large\purple\bigstar\underline{\boxed{\sf \pink{A:B:C=63:35:20}}}

  • Henceforth,The A:B:C is 63:35:20
Similar questions