Math, asked by bu51n355amit, 1 year ago

22. If (b - c)2, (c-a)2, (a - b)2 are in A. P. then show that
a re in A. P.​

Answers

Answered by anu24239
4

\huge\underline\mathfrak\red{Answer}

 {(c - a)}^{2}  -  {(b - a)}^{2}  =  {(a - b)}^{2}  -  {(c - a)}^{2}....(1)  \\  \\ if \:  \:  {(b - c)}^{2}  {(c - a)}^{2} and \:  {(a - b)}^{2}  \: are \: in \: ap \\  \\ solve \: (1) \\  \\ 2 {(c - a)}^{2}  =  {(a - b)}^{2}  +  {(b - a)}^{2}  \\   \\ take \: negative \: sign \: common\\ \\  2 {(c - a)}^{2}  =  {(a - b)}^{2}  +  {( - b + a)}^{2}  \\  \\ 2 {(c - a)}^{2}  =  {(a - b)}^{2}  +  {(a - b)}^{2}  \\  \\ 2 {(c - a)}^{2}  = 2 {(a - b)}^{2}  \\  \\  {(c - a)}^{2}  =  {(a - b)}^{2}  \\  \\ (c - a) = (a - b) \\  \\ c + b = 2a \\  \\ so \: acc \: to \: this\: equation \: c \: a \: b \: are \: in \: ap

Answered by Anonymous
1

i don't know this answer hope before answer will help u lot..

so mark him as brinlist

Similar questions