Math, asked by muskan712727, 3 months ago

22. If cot theta - 1 / cot theta + 1 =1-√3 / 1+√3 then find the value of the acute angle theta

Answers

Answered by sandy1816
5

 \frac{cot \theta - 1}{cot \theta + 1} =   \frac{1 -  \sqrt{3} }{1 +  \sqrt{3} }  \\ using \: componendo \: dividedo \: method \\  \frac{(cot \theta - 1) + (cot \theta + 1)}{(cot \theta - 1) - (cot \theta + 1)}  =  \frac{(1 -  \sqrt{3} ) + (1 +  \sqrt{3} )} {(1 -  \sqrt{3} ) - (1 +  \sqrt{3}) }  \\   : \implies \:  \frac{2cot \theta}{ - 2}  =  \frac{2}{ - 2 \sqrt{3} }  \\   :\implies \: cot \theta =  \frac{1}{ \sqrt{3} }  \\   :  \implies \theta =  \frac{\pi}{3}  \: or \: 60 \degree

Similar questions