Math, asked by smuskan, 3 months ago


22. In the figure, DE || BC, find x

Attachments:

Answers

Answered by vipashyana1
0

Answer:

x = 1

Step-by-step explanation:

In \: ΔABC \\ DE||BC \\  \frac{AD}{BD}  =  \frac{AE}{EC}  \: (BPT \:  thereom) \\  \frac{4x - 3}{3x - 1}  =  \frac{8x - 7}{5x - 3}  \\ Cross \: multiply \\ (4x - 3)(5x - 3) = (8x - 7)(3x - 1) \\ 4x(5x - 3) - 3(5x - 3) = 8x(3x - 1) - 7(3x - 1) \\ 20 {x}^{2}  - 12x - 15x + 9 = 24 {x}^{2}  - 8x - 21x + 7 \\ 20 {x}^{2}  - 27x + 9 = 24 {x}^{2}  - 29x + 7 \\ 20 {x}^{2}  - 24 {x}^{2}  - 27x + 29x + 9 - 7 = 0 \\ ( - 4 {x}^{2} ) + 2x + 2 = 0 \\ 4 {x}^{2}  - 2x - 2 = 0 \\ 2 {x}^{2}  - x - 1 = 0 \\ 2 {x}^{2}  - 2x + x - 1 = 0 \\ (2 {x}^{2}  - 2x) + (x - 1) = 0 \\ 2x(x - 1) + 1(x - 1) = 0 \\ (x - 1)(2x + 1) = 0 \\ (x - 1 = 0)(2x + 1 = 0) \\ x = 1 \: and \: x =  \frac{( - 1)}{2}  \\ Therefore, \: x = 1

Similar questions