English, asked by abhinanndanmh, 2 months ago


22. Show that (tan A x sin A) + cos A = secA​

Answers

Answered by akangsha25
0

Answer:

L.H.S=(tanA×sinA)+cosA

={(sinA/cosA)×sinA}+cosA

={(sin²A)/cosA}+cosA

= (sin²A+cos²A)/cosA

= 1/cosA

= secA

R.H.S= secA

now, L.H.S= R.H.S

Explanation:

Formula–

1) sin²A+cos²A=1

2) tanA= sinA/cosA

3) 1/cosA= tanA

hope it helps you☺️

Answered by aryan073
0

Given :

• Show that :

 \bullet \bf \: (tanx \:  \times  \: sinx) + cosx = secx

To Prove :

 \bullet \bf \: (tanx \:  \times  \: sinx) + cosx = secx

Formula :

 \\  \bullet \sf \: tanx =  \frac{sinx}{cosx}

 \\  \bullet \sf  \: cotx =  \frac{cosx}{sinx}

 \bullet \sf \:  {tan}^{2} x +  {sec}^{2} x = 1

 \bullet \sf \:  {sin}^{2} x +  {cos}^{2} x = 1

 \bullet \sf \:  {cosec}^{2} x +  {cot}^{2} x = 1

Solution :

LHS :

 \implies \sf \: (tanx \:  \times  \: sinx) + cosx \\  \\  \implies \underline{ \red{ \bf{using \: identities}}} \\  \\  \implies \sf \:  \bigg( \frac{sinx}{cosx}  \times sinx \bigg) + cosx \:  \\  \\  \implies \sf \:  \bigg(  \frac{  {sin}^{2}  x}{cosx}  \bigg) + cosx \\  \\  \implies \sf \:  \bigg(   \frac{ {sin}^{2} x +  {cos}^{2} x}{cosx}  \bigg) \\  \\  \implies \sf \bigg( \frac{1}{cosx}  \bigg) \\  \\  \implies \boxed{ \sf{secx}}

LHS=RHS

 \therefore \sf \: (tan x \:  \times sinx) + cosx = secx

Similar questions