Physics, asked by Anonymous, 8 months ago

22. Velocity of particle varies as V = x² + 2x + 5 where V is in m/s and x is in metre. Find acceleration of the particle when position of
particle x = 1 m:

(1) 4 m/s2
(2) 8 m/s2
(3) 32 m/s2
(4) 64 m/s2 ​

Answers

Answered by ThoughtfulSaint
6

Answer:

 \boxed{\sf (3) \ 32 \ m/s^2}

Given:

v = x² + 2x + 5

To Find:

Acceleration of particle when position of particle is x = 1 m.

Explanation:

 \sf a =  \frac{dv}{dt}  \\  \\  \sf \:  \:  \:  \:  = \frac{dv}{dt}  \times  \frac{dx}{dx} \\  \\  \sf \:  \:  \:  \:  =  \frac{dx}{dt}  \times  \frac{dv}{dx} \\  \\  \sf \:  \:  \:  \: =  v \frac{dv}{dx}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: ( \frac{dx}{dt}  = v) \\  \\  \sf \:  \:  \:  \:  = ( {x}^{2}  + 2x + 5) \times  \frac{d( {x}^{2}  + 2x + 5)}{dx} \\  \\  \sf \:  \:  \:  \:  = ( {x}^{2}  + 2x + 5) \times  \frac{d( {x}^{2}) }{dx}   +  \frac{d(2x)}{dx}  +  \frac{d(5)}{dx} \\  \\  \sf \:  \:  \:  \:  = ( {x}^{2}  + 2x + 5) \times (2x + 2) \\  \\  \sf \:  \:  \:  \:  = 2x( {x}^{2}  + 2x + 5) + 2( {x}^{2}  + 2x + 5)\\  \\  \sf \:  \:  \:  \:  = 2 {x}^{3}  + 4 {x}^{2}  + 10x + 2 {x}^{2}  + 4x + 10\\  \\  \sf \:  \:  \:  \:  = 2 {x}^{3}  + 6 {x}^{2}  + 14x + 10

\sf Acceleration \ at \ x = 1: \\  \\  \sf \implies a = 2{(1)}^{3} + 6 {(1)}^{2}  + 14(1) + 10 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   = 2  + 6 + 14 + 10 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   = 32 \: m/s^2

So,

Acceleration of particle when position of particle is x = 1 m = 32 m/s²

Answered by plb62
3

Answer:

hey friend!!

please see the pic for your solution..

happy to help you..

if you think it HELPED you somehow please FOLLOW me

Attachments:
Similar questions