Math, asked by AnamolGaur, 5 months ago

(22/x+y) + (15/x-y) = 5 and (55/x+y) (45/x-y) = 14 solve by simultaneus linear equations

Answers

Answered by TanyaRajvanshi
0

Answer:

x = 8 \: and \: y =  - 3

Step-by-step explanation:

 \frac{22}{x + y}  +  \frac{15}{x - y}  = 5 \:  \:  \:  \:  \:  \:  - ( i)

 \frac{55}{x + y}  +  \frac{45}{ x - y}  = 14 \:  \:  \:  \:  \:  - (ii)

let \:  \frac{1}{x + y}  = a \:  \: and \:  \frac{1}{x - y}  = b

(i) = >  22a + 15b = 5 \:  \:  \:  \:  - (iii)

(ii) =  > 55a + 45b = 14 \:  \:  \:  \:  - (iv)

Subtract equation (iii) from equation (iv)...

 =  > 33a + 30b = 9 \\ divide \: by \: 3 \\  =  > 11a + 10b = 3 \:  \:  \:  \:  - (v)

From (v) derive value of 'a'...

a =  \frac{3 - 10b}{11}

Insert value of 'a' in equation (iii)

22( \frac{3 - 10b}{11} ) + 15b = 5  \\  =  > 2(3 - 10b) + 15b = 5 \\  =  > 6 - 20b + 15b = 5 \\  =  >  - 5b =  - 1 \\  =  > b =  \frac{1}{5}

Insert value of 'b' in value of 'a'

a =  \frac{3 - 10 \times ( \frac{1}{5}) }{11}  \\  =  >  \frac{3 - 2}{11}  \\  =  >  \frac{1}{11}

therefore \:  \frac{1}{x + y}  = a =  \frac{1}{11}  \:  \\ and \:  \frac{1}{x - y} = b =  \frac{1}{5}

Now, By reciprocal,

x + y = 5 \:  \:  \:  \:  \: -  (vi)

x - y = 11 \:  \:  \:  \:  \:  - (vii)

Add equation (vi) and equation (vii)...

2x = 16 \\  =  > x = 8

Insert value of 'x' in equation (vi)

8 + y = 5 \\  =  > y =  - 3

Similar questions