Math, asked by aasthanimbalkar, 10 months ago

22x +25y = 21000
25x+22y = 21300
substitute this.​

Answers

Answered by ItSdHrUvSiNgH
5

Step-by-step explanation:

22x +25y = 21000

25x+22y = 21300

When ever you see such type of diagonal

Just add them one time and subtract them one time

Adding them=>

22x +25y = 21000

25x+22y = 21300

___________________

47x +47y = 42300

x+y = 900.........(1)

Subtract them=>

22x +25y = 21000

25x+22y = 21300

- - -

__________________

-3x +3y = -300

x -y = 100.......(2)

add (1)&(2)=>

2x = 1000

x = 500

put x = 500 in (2)

x-y = 100

500-y = 100

y = 400

So,(x,y) = (500,400)

Answered by Anonymous
23

SOLUTION:-

════════════

Given:

  • 22x +25y=21000
  • 22x +25y=2100025x +22y=21300

To find:

══════

Substitution.

Explanation:

═════════

We have,

•22x+25y= 21000.............(1)

•25x + 22y= 21300...........(2)

Therefore,

From equation (1), we get;

=) 22x +25y= 21000

=) 22x= 21000-25y

 =  > x =  \frac{21000 - 25y}{22} ..................(3)

Putting the value of equation (2), we get;

 =  > 25( \frac{21000  - 25y}{22} ) + 22y = 21300 \\  \\  =  > 525000 - 625y + 484y = 468600 \\  \\   =  > 525000 - 141y = 468600 \\  \\  =  > - 141y =  468600 - 525000 \\  \\  =  >  - 141y =  - 56400 \\  \\  =  > y =  \frac{ - 56400}{ - 141}  \\  \\  =  > y = 400

Putting the value of y in equation (3),we get;

x =  \frac{21000 - 25(400)}{22}  \\  \\  =  > x =  \frac{21000 - 10000}{22}  \\  \\  =  > x =  \frac{11000}{22}  \\  \\  =  > x = 500

Thus,

The value of x is 500 & y is 400.

Follow Me :)

Similar questions
Hindi, 10 months ago