23
31.
Two forces 3 N and 2 N are at an angle o such that the
resultant is R. The first force is now increased to 6 N and the
resultant become 2R. The value of is (HP PMT 2000]
(a) 30°
(b) 60°
(c) 90°
Answers
\theta=120^{\circ}
The value of
Given that,
Explanation:
Angle=
\theta
First force
F= 3 N
Second force
F_{2}=2 N
The resultant force is
R= \sqrt{(F_{1})^2+(F_{2})^2+2F_{1}F_{2}cos\theta}
R= \sqrt{(3)^2+(2^2)+2\times3\times2\times cos\theta}
Now, if the first force increases to 6 n and R become 2 R.
Then,
2R= \sqrt{(6)^2+(2^2)+2\times6\times2\times cos\theta}
Put the value of R in equation in equation (II)
....(II)
2(\sqrt{(13+12\times cos\theta})= \sqrt{(40+24\times cos\theta}
On squaring both sides
4(13+12\ cos\theta)=40+24\ cos\theta
cos\theta=\dfrac{-1}{2}
\theta=cos^{-1}\dfrac{-1}{2}
\theta=120^{\circ}
Hence, The value of theta = 120°
\theta=120^{\circ}
The value of
Given that,
Explanation:
Angle=
\theta
First force
F= 3 N
Second force
F_{2}=2 N
The resultant force is
R= \sqrt{(F_{1})^2+(F_{2})^2+2F_{1}F_{2}cos\theta}
R= \sqrt{(3)^2+(2^2)+2\times3\times2\times cos\theta}
Now, if the first force increases to 6 n and R become 2 R.
Then,
2R= \sqrt{(6)^2+(2^2)+2\times6\times2\times cos\theta}
Put the value of R in equation in equation (II)
....(II)
2(\sqrt{(13+12\times cos\theta})= \sqrt{(40+24\times cos\theta}
On squaring both sides
4(13+12\ cos\theta)=40+24\ cos\theta
cos\theta=\dfrac{-1}{2}
\theta=cos^{-1}\dfrac{-1}{2}
\theta=120^{\circ}
Hence, The value of theta = 120°