Math, asked by komalsingrajput, 1 year ago

23 both parts dear geniuses??

Attachments:

Answers

Answered by Anonymous
8
ANSWER


EQUATION

 {x}^{2} - 3x - 2 = 0



 \alpha \: \: \beta \: are \: roots \:



 = > \alpha . \beta = \frac{c}{a}



 = \alpha . \beta = { - 2}



And



 \alpha + \beta = \frac{ - b}{a}



 \alpha + \beta = \frac{ - 3 \times - 1}{1}



 \alpha + \beta = 3




FOR FINDING THE EQ WHOSE ROOTS ARE



 \frac{1}{2 \alpha + \beta } \: and \frac{1}{2 \beta + \alpha }




NOTE



IF ROOTS ARE GIVEN AND WE HAVE TO FIND
EQ LET A AND B ARE ROOTS THEN EQ BECOME



 {x}^{2} - (a + b) + (a \times b) = 0
EQ.............(1)

so





WE HAVE FIND

 \frac{1}{2 \alpha + \beta } + \frac{1}{2 \beta + \alpha }



 \frac{ \alpha + 2 \beta + 2 \alpha + \beta }{(2 \alpha + \beta )( \alpha + 2 \beta )}



 = \frac{3( \alpha + \beta )}{ { \alpha }^{2} + 4 \alpha \beta + 2 { \beta }^{2} + \alpha \beta }



 = \frac{3( \alpha + \beta )}{2 { \: ( \alpha + \beta) }^{2} + \alpha \beta }



put value of
 = \alpha \: and \: \beta


 = \frac{3 \times 3}{2 {(3)}^{2} - 2}



 = \frac{9}{16}

similarly find



 \frac{1}{2 \alpha + \beta } \times \frac{1}{2 \beta + \alpha }



 = \frac{1}{16}


put these value in eq ...(1)


we get
 {x}^{2} - (a + b) + (a \times b) = 0

so

 {x }^{2} - \frac{9}{16} x + \frac{1}{16} = 0


16 { x }^{2} - 9x + 1 = 0

HENCE

EQ IS

16 { x }^{2} - 9x + 1 = 0

shivam8558: hlo neha
shivam8558: can we talk in inbox plz
Similar questions