Math, asked by malikrajaeir, 6 months ago

23 cm
5 The height of an equilateral triangle is 9 cm.
Find the area of the triangle.​

Answers

Answered by thebrainlykapil
120

CORRECT QUESTION :

  • The height of an equilateral triangle measures 9cm. Find its area, correct upto 2 places of decimal. Take √3 = 1.732cm

━━━━━━━━━━━━━━━━━━━━━━━━━

ANSWER:

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: Height \:  =  \:  \frac{ \sqrt{3} }{2}  \: (side) \:  =  \: 9}} }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\dashrightarrow \displaystyle \sf \: Side\:=\:  \frac{18}{ \sqrt{3} }  \\ \\ \\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Now ,

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:Area \: = \: \frac{ \sqrt{3} }{4 } \:   {(side)}^{2}  }} }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \:   \frac{ \sqrt{3} }{4 }  \:  \times  \:  \frac{18}{ \sqrt{3}  }  \times  \frac{ 18}{ \sqrt{3} } \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \: 3 \sqrt{3 }  \:  \times 9 \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \: 3 \: × \: 1.732  \:  \times 9 \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \: 5.196 \: \times 9 \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:46.964\: cm^2 }} }\\ \\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

So, the area is 46.964 cm²

Answered by ItzCuppyCakeJanu
9

Answer:

CORRECT ANSWER ⬆⬆⬆⬆

Step-by-step explanation:

Similar questions