23: Evaluate each of the following using suitable identities:
(i) (104)
(i) (999)3
Answers
Step-by-step explanation:
(i) (104)^3
We write it as 100 + 4
Using (a+b)^3 = a^3 + b^3 + 3ab(a+b)
Let a be 100 and b be 4
= (100)^3 + (4)^3 + 3×100×4(100+4)
= 1000000 +64 + 1200(104)
= 1000000 + 64 + 124800
= 1124864
(ii) We can write (999)^3 as (1000 - 1)^3
Now applying the same method used above
a = 1000 and b = 1
= (1000)^3 - (1)^3 - 3 × 1000 × 1(1000-1)
= 1000000000 - 1 - 2997000
=997002999
Answer:
(i) (104) = (100+4)
Using Identity (a+b)² = a² + b² + 2ab
Where, a= 100
b=4
(a+b)²= (100)² + (4)² + 2 (100) (4)
(a+b)²= 10,000 + 16 + 200 + 8
= 10,224. Is your Answer!!
(ii) (999)³ = (1000-1)³
Using Identity a-b³ = (a-b) (a²+b²+ab)
Where a=1000
b=1
a-b³= (1000-1) (1000²+1²)+( 1000×1)
= 999 (1000000+1+100)
= 999×1000101
= 999,100,899 Is your Answer!!