Math, asked by yasivani86gmailcom, 1 month ago

23. Evaluate: f cot^4 x dx​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \cot^{4} (x) dx  \\

  =  \int \cot^{2} (x) .\cot^{2} (x)  dx  \\

  =  \int( \cosec^{2} (x) - 1) .\cot^{2} (x)  dx  \\

  =  \int\cosec^{2} (x) .\cot^{2} (x)  dx  - \int \cot^{2} (x)dx  \\

Let cot(x) = t => -cosec²(x)dx=dt

  = -   \int \: t^{2}   dt  - \int \cosec^{2} (x)dx +  \int \: dx  \\

  = -  \frac{ t^{3}}{3}     +  \cot (x) +  x  + c \\

  = -  \frac{  \cot^{3}(x)}{3}     +  \cot (x) +  x   + c\\

Similar questions