English, asked by yuvrajsurajbhan4050, 9 months ago

23. Find modulus & argument of z=1+i​

Answers

Answered by tamanna2902
1

Answer-

Argument = π / 4

Modulus = \sqrt{2

Explanation :

z= rCosФ + i SinФ

z= 1+i

by comparing both , we can say ,

r CosФ = 1  ,  r SinФ = 1

squaring and adding the above two results ,

r^{2} Cos^2Ф + r^2 Sin^2Ф = 1^2 + (-1)^2

r^2 ( Cos^2Ф+ Sin^2Ф) = 1+1

r^2(1) = 2              {bcz , Sin^2Ф+Cos^2Ф =1}

r=\sqrt{2}

So, modulus = \sqrt{2}

Now, divide the two results given above ,

r SinФ / r Cos Ф = 1 / 1

Sin Ф / Cos Ф = 1

Tan Ф = 1 = \pi / 4

Here , both SinФ and Cos Ф are positive , so Ф lies in first quadrant .

Therefore, Ф=π/4

So, argument = π / 4

Similar questions