Math, asked by sourav562, 6 months ago

23. Find the area of the triangle with vertices (-1, 2), (4,0) and
(3,9) by determinants


Answers

Answered by Asterinn
16

Given :

  • vertices of triangle are (-1, 2), (4,0) and (3,9)

To find :

  • area of triangle whose vertices are given

Formula used :

Area of triangle whose vertices are (x1,y1) ,(x2,y2) and (x3,y3) :-

 \dfrac{1}{2} \times  \begin{vmatrix} \rm  x_{1}&\rm y_{1} & {1} \\\rm x_{2} &\rm y_{2} & 1 \\\rm x_{3} &\rm y_{3} &1 \\ \end{vmatrix}

Solution :

Vertices of triangle are = (-1, 2), (4,0) and (3,9)

Area :-

 \implies\dfrac{1}{2} \times  \begin{vmatrix} \rm  x_{1}&\rm y_{1} & {1} \\\rm x_{2} &\rm y_{2} & 1 \\\rm x_{3} &\rm y_{3} &1 \\ \end{vmatrix}

 \implies\dfrac{1}{2} \times  \begin{vmatrix} \rm   - 1&\rm 2 & {1} \\\rm  4 &\rm 0 & 1 \\\rm 3&\rm 9\: &1 \\ \end{vmatrix}

Expanding from row 1:-

 \sf \implies\dfrac{1}{2} \times[   - 1(0   - 9) - 2( 4 - 3) + 1(36 - 0)]

\sf \implies\dfrac{1}{2} \times[  9 - 2 + 36]

\sf \implies\dfrac{1}{2} \times(45 - 2)

\sf \implies\dfrac{1}{2} \times43

\sf \implies\dfrac{43}{2}

\sf \implies21.5 \: square \: units

Answer :

  • The area of the triangle with vertices (-1, 2), (4,0) and (3,9) = 21.5 square unit
Similar questions