23. If (3) x= (5) y=(75)z , then prove that z = /2+
Answers
Answered by
0
Step-by-step explanation:
Let 3^{x}=5^{y}=75^{z}= M3
x
=5
y
=75
z
=M , then
3= M^{\frac{1}{x}}3=M
x
1
, 5= M^{\frac{1}{y}}5=M
y
1
and 75= M^{\frac{1}{z}}75=M
z
1
.
Also, 75 can be written as: 75=5^{2}{\times}375=5
2
×3
M^{\frac{1}{z}}= M^{\frac{2}{y}}{\times}M^{\frac{1}{x}}M
z
1
=M
y
2
×M
x
1
M^{\frac{1}{z}}=M^{\frac{2}{y}+\frac{1}{x}}M
z
1
=M
y
2
+
x
1
\frac{1}{z}=\frac{2}{y}+\frac{1}{x}
z
1
=
y
2
+
x
1
\frac{xy}{z}=2x+y
z
xy
=2x+y
z=\frac{xy}{2+y}z=
2+y
xy
Hence proved.
Answered by
3
Step-by-step explanation:
please please please make as brainliest
Attachments:
Similar questions