23
If cos2B = cos(A+C)
then-
cos(A-C)
(A) tanA, tanB, tanc are in A.P.
(B) tanA, tanB, tanC are in G.P.
(C) tanA, tanB, tanC are in H.P.
(D) None of these
(A) tama, tanb
tanc are Gp
Answers
Answered by
2
Answer:
cos(A-C)
your mean ?
Answered by
4
Answer:
Explanation:
cos2B=cos(A−C)cos(A+C)
Using componendo-dividendo
cos2B−1cos2B+1=cos(A+C)−cos(A−C)cos(A+C)+cos(A−C)
1−2sin2B−12cos2B−1+1=cosAcosC−
sinAsinC−cosAcosC−sinAsinCcosAcosC−sin
AsinC+cosAcosC+sinAsinC
−cot2B=−cotAcotC
tan2B=tanAtanC
Hence tanA,tanB,tanC are in G.P
Similar questions