23. If sin (A + B) = 1 and cos (A - B) = 1, 0° S(A + B) < 90° and A > B, then
find A and B.
Answers
Answer:
sin (A + B)= 1 or sin (A + B) = sin 90° [As sin 90° = 1] A + B = 90° …(1) Again, Cos(A-B) = 1 = cos 0° A – B = 0 …(2) Adding (1) and (2), we get 2A = 90° or A = 45° Putting A = 45° in (1) we get 45° + B = 90° or B = 45° Hence, A = 45° and B = 45°.
Answer :-
- Value of A, B are 45°,45°
Given :-
sin(A+B) = 1
cos(A-B) = 1
To find :-
Value of A, B
Solution :-
As they given sin(A+B) = 1 Let R.H.S also we shall convert in terms of "sin" only As similarly cos (A-B) = 1 We shall convert in forms of "cos" by using the trigonometric table
- sin 90°= 1
- cos 0° = 1
So,
sin(A+B) = sin 90°
Removing "sin" on both sides that gives ,
A+B = 90°{eq-1}
cos(A-B) = cos 0°
Removing "cos" on both sides that gives ,
A-B = 0° {eq-2}
We shall add the both equations which gives any variable value
A+B +(A-B) = 0°+90°
A+B+A-B = 90°
2A= 90°
A = 90/2
A = 45°
So, the value of A is 45°
Now , we shall subtract the both equations which gives the other variable value
A+B -(A-B) = 90°-0°
A+B-A+B = 90°
2B = 90°
B = 90/2
B =45°
So, the value of B is 45°
Know more Trigonometric values
- sin0° = 0
- sin30° = 1/2
- sin45° = 1/√2
- sin60° = √3/2
- sin90° = 1
______________________
- cos0° = 1
- cos30° = √3/2
- cos45° = 1/√2
- cos60° = 1/2
- cos90° = 0
_________________________
Note :- If you remember sin values and cos values Then other Trigonometric values you can calculate easily .