Math, asked by shanthushedbale, 1 year ago

23) If the angle between the two lines represented by
2x² + 5xy + 3y2 +6x + 7y+4=0 is tan'm, then
m =

a)1/5 b) 1 c)7/5 d) 7​

Answers

Answered by HappiestWriter012
11

Option : A

Option : A Answer : m = 1/5

The angle between the lines represented by the lines ax² + 2hxy + by² + 2gx + 2fy + c = 0 is given by,

 \tan( \theta)  =  \frac{ \pm2 \sqrt{ {h}^{2}  - ab}  }{a + b}

Given equation of pair of lines is,

2x² + 5xy + 3y²+6x + 7y+4=0

So,

a = 2

b = 3

2h = 5

Angle between the lines is,

\tan( \theta)  =  \frac{ \pm2 \sqrt{ {h}^{2}  - ab}  }{a + b} \\  \\  \tan( \theta)   =  \frac{ 2 \sqrt{ ({ \frac{5}{2} )}^{2} - (2)(3) } }{2 + 3}  \\  \\ tan \theta =  \:   \frac{2\sqrt{ \frac{25}{4}  - 6} }{5} \\  \\ tan \theta =  \frac{ 2\sqrt{ \frac{25 - 24 }{4} } }{5}  \\  \\  \tan \theta \:  =   \frac{2 \sqrt{ \frac{1}{4} } }{5}  \\  \\  \tan \theta  =  \frac{2 \frac{1}{2} }{5}  \\  \\  \tan \theta \:  =  \frac{1}{5}  \\  \\  \theta \:  =  {tan}^{ - 1} ( \frac{1}{5} )</p><p>

Given,

 \theta \:  =   {tan}^{ - 1} m =  {tan}^{ - 1} ( \frac{1}{5} )

Therefore, m = 1/5.

Similar questions