Math, asked by keyurahir6555, 6 months ago

23. If x+ 1/x = 4, then find the value of x² + 1/x?​

Answers

Answered by soumyashree96
0

Step-by-step explanation:

ANSWER

x

4

+

x

4

1

=119

Adding 2 on both the sides,

x

4

+

x

4

1

+2=119+2

(x

2

+

x

2

1

)

2

=121⇒x

2

+

x

2

1

=11

Subtracting 2 on both sides.

x

2

+

x

2

1

−2=11−2

(x−

x

1

)

2

=9⇒x−

x

1

=±3

Hence, x−

x

1

=3.

Answered by Anonymous
1

Solution:-

Given

 \rm \:  \to  x +  \dfrac{1}{x}  = 4

To find the value of

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Now using this identity

 \rm \to \: (a + b)^{2}  =  {a}^{2}  +  {b }^{2}  + 2ab

Now take

\rm \:  \to  x +  \dfrac{1}{x}  = 4

Squaring on both side

 \rm \:  \to   \bigg(x +  \dfrac{1}{x}  \bigg)^{2}  = {4}^{2}

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times x \times  \dfrac{1}{x}  = 16

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times  \cancel{x} \times  \dfrac{1}{ \cancel{x}}  = 16

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2  = 16

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 16 - 2

\rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 14

So Value of

\rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 14

Similar questions