23.) In a AABC, prove that
sin3A sin(B-C) + sin3B sin (C - A) + sin3C sin(A-B) = 0
Answers
Step-by-step explanation:
sin^3a sin(b-c) +sin^3b sin(c-a) +sin^3c sin(a-b) +sin (a+b+c) sin(b-c) sin(c-a) sin(a-b) =0
sin (a+b+c) sin(b-c) sin(c-a) sin(a-b) =
sin (a+b+c)[sin(b-c) sin(c-a)] sin(a-b) =
sin (a+b+c)[(-1/2)(cos(b-a)-cos((b+a)-2c)] sin(a-b) =
(-1/2)[sin (a+b+c)sin(a-b)](cos(b-a)-cos((b+a)-2c) =
+(-1/2)[(-1/2)(cos(c+2a)-cos(c+2b)(cos(b-a)-cos((b+a)-2c) =
+(1/4)(cos(c+2a)-cos(c+2b))(cos(b-a)-cos((b+a)-2c) =
+(1/4)(cos(c+2a)-cos(c+2b))(cos(b-a)-cos((b+a)-2c) =
+(1/4)[cos(c+2a)cos(b-a)-cos(c+2b)cos(b-a)-cos(c+2a)cos((b+a)-2c)+cos(c+2b)cos((b+a)-2c)] =
+(1/4)(1/2)[cos(a+b+c)+cos(c-b+3a)-cos(c-a+3b)-cos(c+a+b)-cos(3a+b-c)-cos(3c-b+a)+cos(3b+a-c)+cos(b-a+3c)] =
+(1/8)[cos(a+b+c)+cos(c-b+3a)-cos(c-a+3b)-cos(c+a+b)-cos(3a+b-c)-cos(3c-b+a)
+cos(3b+a-c)+cos(b-a+3c)] =
+(1/8)[cos(c-b+3a)-cos(c-a+3b)-cos(3a+b-c)-cos(3c-b+a)+cos(3b+a-c)+cos(b-a+3c)] =
+(1/8)[cos(3a+(c-b))-cos(3b+(c-a))-cos(3a-(c-b))-cos(3c-(b-a))+cos(3b-(c-a))+cos(3c+(b-a))] =
+(1/8)[cos(3a+(c-b))-cos(3a-(c-b))+cos(3b-(c-a))-cos(3b+(c-a))+cos(3c+(b-a))-cos(3c-(b-a)] =
+(1/8)(-2sin(3a)sin(c-b)+2sin(3b)sin(c-a)-2sin(3c)sin(b-a)) =
But Sin(-x)=-sinx
+(1/4)(sin(3a)sin(b-c)+sin(3b)sin(c-a)+sin(3c)sin(a-b)) =
Your question becomes:
sin^3a sin(b-c) +sin^3b sin(c-a) +sin^3c sin(a-b)+sin (a+b+c) sin(b-c) sin(c-a) sin(a-b) =0
sin^3a sin(b-c) +sin^3b sin(c-a) +sin^3c sin(a-b)+(1/4)(sin(3a)sin(b-c)+sin(3b)sin(c-a)+sin(3c)sin(a-b))=0
sin(b-c)[sin^3a +(1/4)sin(3a)] + sin(c-a)[sin^3b+(1/4)sin(3b)] + sin(a-b)[sin^3c+ (1/4)sin(3c)]=0
sin(b-c)[(sin a)^3 +(1/4)sin(3a)] + sin(c-a)[(sin b)^3+(1/4)sin(3b)] + sin(a-b)[(sin c)^3+ (1/4)sin(3c)]=0
(sinx)^3 = 3/4 sinx- 1/4sin3x --> (sinx)^3 + (1/4)sin3x = 3/4sinxsin(b-c)[(3/4)sin(a)] + sin(c-a)[(3/4)sin(b)] + sin(a-b)[(3/4)sin(c)]=0
divide 3/4
sin(b-c)sin(a) + sin(c-a)sin(b) +sin(a-b)sin(c)=0
2[Cos(b-c+a)-cos(b-c-a)]+ 2[cos(c-a+b)-cos(c-a-b)]+ 2[cos(a-b+c)-cos(a-b-c)]
=0
Divide 2
Cos(b-c+a)-cos(b-c-a)+cos(c-a+b)-cos(c-a-b)+cos(a-b+c)-cos(a-b-c)=0
But cos(-x)= cosx so cos(b-c+a)= cos(-b+c-a)
Cos(b-c+a)-cos(b-c-a)+cos(c-a+b)-cos(c-a-b)+cos(a-b+c)-cos(a-b-c)=0
-cos(b-c-a)+cos(c-a+b)+cos(a-b+c)-cos(a-b-c)=0
also cos(c-a+b)= cos(-c+a-b)
-cos(b-c-a)+cos(c-a-b)+cos(a-b+c)-cos(a-b-c)=0
so also
-cos(b-c-a)+cos(a-b+c)=0
The result , wherever a,b,c the value is zero , so the right question is “proof that sin^3a sin(b-c) +sin^3b sin(c-a) +sin^3c sin(a-b) +sin (a+b+c) sin(b-c) sin(c-a) sin(a-b) =0 for any value a,b,c”.
Since ABC is a triangle
A + B + C = π -------(1)
LHS
(The given expression is written in this manner for simplicity)