Math, asked by shashi4476, 11 months ago

23. The denominator of a fraction is greater than its numerator by 11. If 8 is
added to both its numerator and denominator, it becomes 3/4. Find
the fraction.​

Answers

Answered by Anonymous
39

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The denominator of a fraction is greater than it's numerator by 11. If 8 is added to both it's numerator and denominator, it becomes 3/4.

\bf{\red{\underline{\bf{To\:find\::}}}}

The fraction.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the numerator be r

Let the denominator be m

\bf{\boxed{\bf{The\:fraction\:=\frac{r}{m} }}}}}

A/q

\mapsto\sf{m=11+r.......................(1)}

&

\longrightarrow\sf{\dfrac{r+8}{m+8} =\dfrac{3}{4} }\\\\\\\longrightarrow\sf{4(r+8)=3(m+8)}\\\\\\\longrightarrow\sf{4r+32=3m+24}\\\\\\\longrightarrow\sf{4r+32=3(11+r)+24\:\:\:\:[from(1)]}\\\\\\\longrightarrow\sf{4r+32=33+3r+24}\\\\\\\longrightarrow\sf{4r+32=3r+57}\\\\\\\longrightarrow\sf{4r-3r=57=32}\\\\\\\longrightarrow\sf{\pink{r=25}}

Putting the value of r in equation (1),we get;

\longrightarrow\sf{m=11+25}\\\\\longrightarrow\sf{\pink{m=36}}

Thus;

\underbrace{\sf{The\:fraction\:is\:\frac{r}{m} =\frac{25}{36} }}}}

Answered by mddilshad11ab
33

\large{\underline{\red{\rm{Question:}}}}

The denominator of a fraction is greater than its numerator by 11. If 8 is added to

both its numerator and denominator, it becomes 3/4.Find the fraction?

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Let:}}}}

  • \rm{The\: numerator\:of\: fraction\:be\:N}
  • \rm{The\: denominator\:of\: fraction\:be\:D}
  • \sf{The\: fraction be\:\dfrac{N}{D}}

\large{\underline{\red{\rm{To\: Find:}}}}

  • \sf\green{The\: fraction=?}

\small{\underline{\purple{\rm{As\:per\:the\:1st\:case:}}}}

\rm{The\: D\:of\: fraction\:is\: greater\:than\: it's\:N\:by\:11}

\rm{\implies D=N+11}

\rm\green{\implies N-D=-11-----(i)}

\small{\underline{\purple{\rm{As\:per\:the\:2nd\:case:}}}}

\rm{If\: 8\:is\:added\:to\:boths\:it's\:N\:and\:D\:it\: become\:3/4}

\rm{\implies \dfrac{N+8}{D+8}=\dfrac{3}{4}}

\rm{\implies 4(N+8)=3(D+8)}

\rm{\implies 4N+32=3D+24}

\rm{\implies 4N-3D=24-32}

\rm\green{\implies 4N-3D=-8-----(ii)}

  • \rm{multiplying\:by\:4\:in\:eq\:1}

\rm{\implies 4N-4D=-44}

\rm{\implies 4N-3D=-8}

\rm{\implies -D=-36}

\rm\red{\implies D=36}

  • \sf{putting\: the\: value\:of\:D=36\:in\:eq\:1}

\rm{\implies N-D=-11}

\rm{\implies N-36=-11}

\rm{\implies N=-11+36}

\rm\red{\implies N=25}

Hence,

\small{\boxed{\green{\rm{The\: Fraction=\dfrac{25}{36}}}}}

Similar questions