Math, asked by vinithanair5403, 11 months ago

23 The difference between C.I. and S.I. on a certain principal at 8% p.a. for two years is `16. Find the sum of money

Answers

Answered by CharmingPrince
14

{\huge{\underline {\mathfrak {\green {Question}}}}}

The difference between C.I. and S.I. on a certain principal at 8% p.a. for two years is `16. Find the sum of money.

_________________________

{\huge{\underline {\mathfrak {\green {Answer}}}}}

{\boxed{\tt{\red {Given:}}}}

\\

Rate = 8%

Time = 2 years

Difference between S.I & C.I = 16

\\

_____________________________________

{\boxed{\tt{\red {Find:}}}}

\\

The sum of money = ?

\\

_____________________________________

{\boxed{\tt{\red {Solution:}}}}

\\

Let the sum = P

SI = \frac {PRT}{100}

SI = \frac {P×8×2}{100}

SI = \frac {16P}{100}

\\

For Finding CI ,

\\

=A = P ({1 + \frac{R}{100}})^{n}

=A = P({1 + \frac {8}{100}})^{2}

= A = P ({ \frac{108}{100}})^{2}

=A = P ({\frac {54}{50}})^{2}

=A =  \frac {2916P}{2500}

\\

C.I = A - P

= \frac {2916P}{2500}-P

= \frac{2916P-2500P}{2500}

= \frac{416P}{2500}

\\

ATQ,

= CI - SI = 16

=  </strong>\frac<strong> {</strong><strong>4</strong><strong>16P}{2500}-</strong><strong>\frac{</strong><strong>16</strong><strong>P}</strong><strong>{</strong><strong>1</strong><strong>00}</strong><strong> = 16

= \frac {16P}{2500}= 16

= P = 2500

\\

_________________________

Similar questions