23. The digits of a two-digit number differ by 3. If the digits are interchanged, and the resulting number is added to the original number, we get 143. What can be the original number?
Answers
Answered by
1
Let the unit digit be x
Tens digit => x+3x+3
10(x+3)+x10(x+3)+x
digits interchanged =10x+x+3=10x+x+3
10(x+3)+x+10x+x+3=14310(x+3)+x+10x+x+3=143
=> 10x+30+12x+3=14310x+30+12x+3=143
=> 22x+33=14322x+33=143
22x=143−3322x=143−33
22x=11022x=110
x=11022x=11022
x=5x=5
Original number = 85
Tens digit => x+3x+3
10(x+3)+x10(x+3)+x
digits interchanged =10x+x+3=10x+x+3
10(x+3)+x+10x+x+3=14310(x+3)+x+10x+x+3=143
=> 10x+30+12x+3=14310x+30+12x+3=143
=> 22x+33=14322x+33=143
22x=143−3322x=143−33
22x=11022x=110
x=11022x=11022
x=5x=5
Original number = 85
Similar questions