Math, asked by ashishbhagat78, 6 months ago

23. The external radius of a 14 em tong metalnie pipe teem, and the pipela lom thick Find
the volume or the metal used in the piper the mass of 1 cm. metalte 85. And the mass
of the cylinder​

Answers

Answered by Anonymous
33

\underline{\underline{\red{\mathfrak{\huge{ \: Correct \: Question: \: }}}}}

The external radius of a 14-cm-long metallic pipe is 9cm, and the pipe is 1cm thick. Find the volume of the metal used in the pipe. If the mass of 1cm³ metal is 8.5g. Find the mass of the pipe.

____________________________

\purple{\mathfrak{\huge{Given}}}  \begin{cases} \heartsuit\sf  External \: Radius \: of \: pipe = 9cm \\  \\  \heartsuit\sf  Length \: of \: the \: pipe = 14cm \\   \\  \sf \heartsuit  Mass \: of \: 1 {cm}^{3} = 8.5g  \\  \\  \sf \heartsuit Thickness \: of \: pipe = 1cm \end{cases}

\purple{\mathfrak{\huge{Find}}}  \begin{cases} \clubsuit\sf  Volume \: of \: metal \: used \: in \: pipe \\  \\  \\  \\  \clubsuit\sf  Mass \: of \: the \: pipe\end{cases}

\purple{\mathfrak{\huge{Solution}}}

Here,

External Radius, R = 9cm

Internal Radius, r = 9 - 1 = 8cm

we, know that

 \boxed{\sf Volume \: of \: Pipe =  \pi {r}^{2}h}

\implies\sf Volume \: of \: Pipe =  \pi(  {R}^{2} - {r}^{2})h

where,

  • π = 3.13
  • R = 9cm
  • r = 8cm
  • h = 14cm

So,

\dashrightarrow\sf Volume \: of \: Pipe =  \pi(  {R}^{2} - {r}^{2})h \\  \\  \\ \dashrightarrow\sf Volume \: of \: Pipe =  3.14(  {9}^{2} - {8}^{2}) \times 14 \\  \\  \\  \dashrightarrow\sf Volume \: of \: Pipe =  3.14(81 - 64) \times 14 \\  \\  \\ \dashrightarrow\sf Volume \: of \: Pipe =  3.14 \times 17 \times 14 \\  \\  \\ \dashrightarrow\sf Volume \: of \: Pipe =  747.32 {cm}^{3}

\therefore\sf The \: Volume \: of \: metal \: used \: is=  747.32 {cm}^{3}

____________________________

Now,

Mass of 1cm³ = 8.5g

Mass of 747.32cm³ = 747.32 × 8.5 = 6352.22g

Hence, Mass of the Pipe = 6352.22g

Similar questions