23. The sum of the digits of a two digit number is 12. The number obtained by interchanging the
digits is greater than the original number by 54. Find the original number.
Answers
Let ,
The digit in ones place = x
So, the digit in tens place = 12 - x
Original no. = 10(12 - x) + 1(x)
= 120 - 10x + x
= 120 - 9x
New no. = 10(x) + 1(12 - x)
= 10x + 12 - x
= 9x + 12 [∵By reversing the digits]
According to Question,
⇒ New no. - Original no. = 54
⇒ (9x + 12) - (120 - 9x) = 54
⇒ 9x + 12 - 120 + 9x = 54
⇒ 18x - 108 = 54
⇒ 18x = 54 + 108
⇒ 18x = 162
⇒ x = 162 / 18
⇒ x = 9
Therefore ,
Original no. = 120 - 9x = 120 - 9(9)
= 120 - 81 = 39
New no. = 93 [∵ By reversing the digits]
Hence, the required number is either 39 or 93
Answer:
The Original Number is 39.
Step-by-step explanation:
Given :
Sum of the digits = 12
The number obtained by interchanging the
digits is greater than the original number by 54.
To find :
The Original Number
Solution :
Original Number -
- Units Place as x
- Tens place as 10(12 - x)
⇒ 10(12 - x) + x
⇒ 120 - 10x + x
⇒ 120 - 9x ......... [Original number]
Number with reversed digits -
- Units Place as (12 - x)
- Tens Place as 10(x)
⇒ 10(x) + (12 - x)
⇒ 10x + 12 - x
⇒ 9x + 12 ......... [Number with reversed digits]
According to the Question -
The number obtained by interchanging the
digits is greater than the original number by 54.
⇒ (120 - 9x) + 54 = 9x + 12
⇒ 174 - 9x = 9x + 12
⇒ 9x + 9x = 174 - 12
⇒ 18x = 162
⇒ x = 162/8
⇒ x = 9
★ Original Number -
⇒ 120 - 9(9)
⇒ 120 - 81
⇒ 39
Original number = 39
The Original Number is 39.