Physics, asked by GloomyDamsel, 7 months ago

23.
Two projectiles are shown in the figure IT, and T are the time periodu, and u are the velocities:
1)T2>T1
2)T1=T2
3)u1 >u2
4) u2=u1

Attachments:

Answers

Answered by shadowsabers03
17

From the figure we observe the following:

  • Horizontal range, \sf{R_1<R_2\quad\quad\dots(1)}
  • Angle of projection, \sf{\theta_1>\theta_2\quad\quad\dots(2)}
  • Maximum height, \sf{H_1=H_2\quad\quad\dots(3)}

Consider (3).

\sf{\longrightarrow H_1=H_2}

\sf{\longrightarrow \dfrac{(u_1)^2\sin^2\theta_1}{2g}=\dfrac{(u_2)^2\sin^2\theta_2}{2g}}

Since initial speed is positive and angle of projection is acute,

\sf{\longrightarrow u_1\sin\theta_1=u_2\sin\theta_2\quad\quad\dots(4)}

\sf{\longrightarrow\dfrac{u_1}{u_2}=\dfrac{\sin\theta_2}{\sin\theta_1}\quad\quad\dots(5)}

But from (2),

\sf{\longrightarrow\theta_1>\theta_2}

Since both are acute and \sf{\sin\theta\propto\theta\quad\!\forall\theta\in\left[0^o,\ 90^o\right],}

\sf{\longrightarrow\sin\theta_1>\sin\theta_2}

\sf{\longrightarrow\dfrac{\sin\theta_2}{\sin\theta_1}<1}

Then (5) becomes,

\sf{\longrightarrow\dfrac{u_1}{u_2}<1}

\sf{\longrightarrow u_1<u_2}

Time of flight is given by,

\sf{\longrightarrow T=\dfrac{2u\sin\theta}{g}}

\sf{\Longrightarrow T\propto u\sin\theta}

So (4) can imply,

\sf{\longrightarrow\underline{\underline{T_1=T_2}}}

Hence (2) is the answer.

Similar questions