Math, asked by makvanapruthvi1, 5 months ago

-
23210
10) Find the aradhatic Polynomicus whose someone
of zeroes
= 4 and
Product
Of zero es=1​

Answers

Answered by satishgoyal409
1

x²-4x+1

Step-by-step explanation:

Let  \: the \:  zeroes \:  be  \: x \:  and  \: y. \\ Given: \: x + y = 4 \\ xy = 1 \\To  \: find: \:  Quadratic \:  polynomial  \: with \:  zeroes \:  = x,y \\ Solution: y = 4 - x \\ x(4 - x) = 1 \\ 4x -  {x}^{2}  = 1 \\  -  {x}^{2}  + 4x - 1 = 0 \\ Multiply \: with \:  - 1 \\  {x}^{2}  - 4x + 1 = 0 \: (answer) \\ Proof: {x}^{2}  - 4x + 1 = 0  \\  {x}^{2}  - 4x + 4 - 3 = 0 \\ ( {x}^{2}  - 2(2)(x) +  {2}^{2} ) -  {( \sqrt{3} )}^{2}  = 0 \\  {(x - 2)}^{2}  -  {( \sqrt{3}) }^{2}  = 0 \\ (x - 2  +  \sqrt{3}) (x - 2 -  \sqrt{3} ) = 0 \\ x = 2 -  \sqrt{3} \:  , \: x = 2 +  \sqrt{3} \\ sum \:  = 2 -  \sqrt{3} + 2 +  \sqrt{3}  \\  = 4 \\ product \:  = (2 -  \sqrt{3} )( 2 +  \sqrt{3} ) \\  = 1

Similar questions