Math, asked by achetkichu, 2 months ago

(24/5)^-4÷ (12/15)^6 × (6/4)^5​

Answers

Answered by Anonymous
26

Given to solve :-

\dfrac{\bigg(\dfrac{24}{5}\bigg)^{-4}  }{\bigg(\dfrac{12}{15}\bigg)^{6}  } \times \bigg(\dfrac{6}{4} \bigg)^5

SOLUTION:-

As we know from exponent and laws,

\dfrac{a^m}{b^m} = \bigg(\dfrac{a}{b} \bigg)^mand

\bigg(\dfrac{a}{b} \bigg)^{-n}=\bigg(\dfrac{b}{a} \bigg)^n

So,

\bigg(\dfrac{24}{5} \bigg)^{-4}=\bigg(\dfrac{5}{24} \bigg)^4

\bigg(\dfrac{12}{15} \bigg)^6=\dfrac{12^6}{15^6}

\bigg(\dfrac{6}{4} \bigg)^5=\dfrac{6^5}{4^5}

Substituting the values we get

\dfrac{\bigg(\dfrac{5^4}{24^4} \bigg)}{\bigg(\dfrac{12^6}{15^6}\bigg) }\times \bigg(\dfrac{6^5}{4^5}\bigg)

\dfrac{5^4}{24^4}\times\dfrac{15^6}{12^6}\times \dfrac{6^5}{4^5}

24^4 = (2\times12)^4= 2^4 \times 12^4

15^6= (3\times5)^6= 3^6 \times 5^6

12^6=(3\times4)^6= 3^6\times4^6

\dfrac{5^4}{ 2^4 \times 12^4}\times \dfrac{3^6\times5^6}{12^6} \times\dfrac{6^5}{4^5}

\dfrac{5^{10}\times3^6\times2^5\times3^5}{2^4\times12^{10}\times2^{10}}

\dfrac{5^{10}\times3^{11}\times2^5}{12^{10}\times2^{14}}

\dfrac{5^{10}\times3^{11}\times2^5}{3^{10}\times4^{10}\times2^{14}}

\dfrac{5^{10}\times3\times2^5}{4^{10}\times2^{14}}

\dfrac{5^{10}\times2^5\times3}{(2\times2)^{10}\times2^{14}}

\dfrac{5^{10}\times2^5\times3}{2^{20}\times2^{14}}

\dfrac{5^{10}\times3}{2^{29}}

Required answer is 5¹⁰×3/2²⁹

Refer attachment for better explanation

Used formulae :-

\dfrac{a^m}{b^m} = \bigg(\dfrac{a}{b} \bigg)^mand

\bigg(\dfrac{a}{b} \bigg)^{-n}=\bigg(\dfrac{b}{a} \bigg)^n

{(a\times b)^n  = a^n \times b^n}

Attachments:

MisterIncredible: EXCELLENT ^_^
Similar questions