Math, asked by vermashreya668, 3 months ago

24) A pair of adjacent sides of a rectangle are in the ratio 3:4. If its diagonal
is 20 cm find the lengths of the sides and hence the perimeter of the
rectangle.​

Answers

Answered by Anonymous
3

GiveN:-

A pair of adjacent sides of a rectangle are in the ratio 3:4. If its diagonal is 20 cm.

To FinD:-

Find the lengths of the sides and hence the perimeter of the rectangle.

SolutioN:-

Diagram :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,2.74){\framebox(0.25,0.25)}\put(4.74,0.01){\framebox(0.25,0.25)}\put(2,-0.7){\sf\large 3x cm}\put(-1.4,1.4){\sf\large 4x cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\qbezier(0,0)(0,0)(5,3)\put(1.65,1.8){\sf\large 20 cm}\end{picture}

  • Let the length be 3x.
  • Breadth = 4x

We know that,

\small{\green{\underline{\boxed{\bf{Diagonal=\sqrt{(Length)^2+(Breadth)^2}}}}}}

where,

  • Diagonal = 20 cm
  • Length = 3x
  • Breadth = 4x

Putting the values,

\small\implies{\sf{20=\sqrt{(3x)^2+(4x)^2}}}

Squaring both the sides,

\small\implies{\sf{(20)^2=(3x)^2+(4x)^2}}

\small\implies{\sf{400=9x^2+16x^2}}

\small\implies{\sf{400=25x^2}}

\small\implies{\sf{\dfrac{400}{25}=x^2}}

\small\implies{\sf{16=x^2}}

Square rooting both the sides,

\small\implies{\sf{\sqrt{16}=x}}

\large\therefore\boxed{\bf{x=4.}}

Dimensions:-

  1. Length = 3x = 3 × 4 = 12 cm
  2. Breadth = 4 × 4 = 16 cm

Now the perimeter:-

\small{\green{\underline{\boxed{\bf{Perimeter=2(Length+Breadth)}}}}}

where,

  • Length = 12 cm
  • Breadth = 16 cm

Putting the values,

\small\implies{\sf{Perimeter=2(12+16)}}

\small\implies{\sf{Perimeter=2\times28}}

\large\therefore\boxed{\bf{Perimeter=56\:cm.}}

The length is 12 cm.

The breadth is 16 cm.

The perimeter is 56 cm.

Answered by Anonymous
4

 \huge \sf \underline \red{Answer : }

\sf \underline \purple{ \therefore \: so \: perimeter \:is \: 56cm}

\sf \underline \purple{ \therefore \: length = 12cm \: and \: breadth = 16cm }

 \huge \sf \underline \pink{Given : }

  • The pair of a adjacent sides of a rectangle are in the ratio 3:4

  • Diagonal = 20

 \huge \sf \underline \blue{To  \: find : }

  • length of the sides

  • perimeter of rectangle

 \huge \sf \underline \orange{solution : }

 \sf \underline{Given \: length : breadth = 3 : 4}

 \sf \underline{so}

 \sf\underline{Let \: length \: be \: 3x}

 \sf \underline{Let \: breadth \: be \: 4x}

 \sf \underline{diagonal = 20}

  • The Diagonal of two adjacent sides form a right angled triangle by Pythagoras theorem

 \sf \underline{we \: know \: that \: pythagoras \: formula : }

 \:  \:  \:  \:  \:  \:  \:  \sf{ \implies \: (20) {}^{2}  = (4x) {}^{2}  + (3x) {}^{2}}

\:  \:  \:  \:  \:  \:  \:  \sf{ \implies \: (400)   = (16x) {}^{2}    + (8x)  {}^{2} }

\:  \:  \:  \:  \:  \:  \:  \sf{ \implies \: (25) {}^{2}  =400 }

\:  \:  \:  \:  \:  \:  \:  \sf{ \implies \:  {x }^{2}  =  \dfrac{400}{25}  }

\:  \:  \:  \:  \:  \:  \:  \sf{ \implies \:  {x }^{2}  =  16  }

\:  \:  \:  \:  \:  \:  \:  \sf{ \implies \:  {x } = 4}

 \:  \:  \sf \underline{then}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \: length = 4 \times 4 = 16cm}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \: breadth = 3 \times 4 = 12cm}

 \:  \:  \:  \:  \:  \sf \underline{Now \: we \: know \: that \: perimeter \: formula}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf{ \boxed{ \underline{ \underline{ \red{ \tt{perimeter = 2(l + b) \: }}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \implies2(16  + 12)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \implies2(28)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \implies56}

 \sf \underline{ \therefore \: so \: perimeter \:is \: 56cm}

____________________________________

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \: length \: of \: rectangle = 12cm}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \: breadth \: of \: rectangle = 16cm}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \: perimeter \: of \: rectangle = 56cm}

Similar questions