Math, asked by dsuvrocks, 1 day ago

24. Find n and x in the expansion of (1+x)", if the fifth term is four times the fourth term and the fourth term is 6 times the third term​

Answers

Answered by Sentamizhselvana213
0

Step-by-step explanation:

(1+x)

n

3rd term=

n

C

2

x

n−3

5th term=

n

C

4

x

n−5

n

C

2

x

n−3

=4

n

C

4

x

n−5

(n−2)!2!

n!

x

2

=

(x−4)!4!

4n!

(n−2)(n−3)(n−4)!2!

x

2

=

(x−4)!4×3×2!

4

⇒3x

2

=(n−2)(n−3)

⇒3x

2

=n

2

−5n+6---------------(1)

6thterm

4thterm

=

3

40

n

C

5

x

n−6

n

C

3

x

n−4

=

3

40

(n−3)(n−4)(n−5)!3!

5×4×3!×(n−5)!x

2

=

3

40

⇒3x

2

=2(n−3)(n−4)

⇒3x

2

=2(n−3)(n−4)

⇒3x

2

=2n

2

−14n+24-------------(2)

From Equation 1& 2,

n

2

−5n+6=2n

2

−14n+24

⇒n

2

−9n+18=0

⇒n

2

−6n−3n+18=0

⇒(n−6)(n−3)=0

⇒n=3 or n=6.

n

=3, then x=0

From, Equation 1

3x

2

=n

2

−5n+6

⇒3x

2

=6

2

−6⋅5+6o,

⇒3x

2

=36−30+6

⇒3x

2

=12

⇒x

2

=4

⇒x=±2

So, n=3,x=0

and n=6,x=±2

Answered by msaadamdavadi
0

Step-by-step explanation:

Step-by-step explanation:

(1+x)

n

3rd term=

n

C

2

x

n−3

5th term=

n

C

4

x

n−5

n

C

2

x

n−3

=4

n

C

4

x

n−5

(n−2)!2!

n!

x

2

=

(x−4)!4!

4n!

(n−2)(n−3)(n−4)!2!

x

2

=

(x−4)!4×3×2!

4

⇒3x

2

=(n−2)(n−3)

⇒3x

2

=n

2

−5n+6---------------(1)

6thterm

4thterm

=

3

40

n

C

5

x

n−6

n

C

3

x

n−4

=

3

40

(n−3)(n−4)(n−5)!3!

5×4×3!×(n−5)!x

2

=

3

40

⇒3x

2

=2(n−3)(n−4)

⇒3x

2

=2(n−3)(n−4)

⇒3x

2

=2n

2

−14n+24-------------(2)

From Equation 1& 2,

n

2

−5n+6=2n

2

−14n+24

⇒n

2

−9n+18=0

⇒n

2

−6n−3n+18=0

⇒(n−6)(n−3)=0

⇒n=3 or n=6.

n

=3, then x=0

From, Equation 1

3x

2

=n

2

−5n+6

⇒3x

2

=6

2

−6⋅5+6o,

⇒3x

2

=36−30+6

⇒3x

2

=12

⇒x

2

=4

⇒x=±2

So, n=3,x=0

and n=6,x=±2

Similar questions