Math, asked by shashi4476, 11 months ago

24. If 2 is added to the numerator of a fraction, it reduces to 1/2
and if 1 is
subtracted from the denominator, it reduces to 1/3.
Find the fraction​
solve step by step

Answers

Answered by Anonymous
56

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

If 2 is added to the numerator of a fraction, it reduces to 1/2 and if 1 is subtracted from the denominator, it reduces to 1/3.

\bf{\red{\underline{\bf{To\:find\::}}}}

The fraction.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the numerator be r

Let the denominator be m

\bf{\boxed{\bf{The\:fraction=\frac{r}{m} }}}}}

A/q

\underbrace{\bf{1_{st}\:Case\::}}}}}

\longrightarrow\sf{\dfrac{r+2}{m} =\dfrac{1}{2} }\\\\\\\longrightarrow\sf{2(r+2)=m}\\\\\\\longrightarrow\sf{2r+4=m....................(1)}

\underbrace{\bf{2_{nd}\:Case\::}}}}}

\longrightarrow\sf{\dfrac{r}{m-1} =\dfrac{1}{3}} \\\\\\\longrightarrow\sf{3r=1(m-1)}\\\\\\\longrightarrow\sf{3r=m-1}\\\\\\\longrightarrow\sf{3r=2r+4-1\:\:\:\:[from(1)]}\\\\\\\longrightarrow\sf{3r=2r+3}\\\\\\\longrightarrow\sf{3r-2r=3}\\\\\\\longrightarrow\sf{\pink{r=3}}

Putting the value of r in equation (1),we get;

\longrightarrow\sf{m=2(3)+4}\\\\\longrightarrow\sf{m=6+4}\\\\\longrightarrow\sf{\pink{m=10}}

Thus;

\bf{\boxed{\bf{The\:fraction=\frac{r}{m}=\frac{3}{10}  }}}}}


BrainlyRaaz: Awesome ❤️
Answered by Anonymous
74

\huge\bf{\underline{\pink{Question:-}}}

24. If 2 is added to the numerator of a fraction, it reduces to 1/2 and if 1 is subtracted from the denominator, it reduces to 1/3. Find the fraction.

━━━━━━━━━━━━━━━━━━━━

\large\bf{\underline{\purple{Answer:-}}}

Fraction is 3/10.

\large\bf{\underline{\orange{ExPlanATiOn:-}}}

\large\bf{\underline{\green{Given:-}}}

It is given that if we add 2 to the numerator of fraction it reduces 1/2.

and if 1 is substracted from the denominator it reduces 1/3.

\large\bf{\underline{\green{To\:Find:-}}}

we need to find the fraction.

\huge\bf{\underline{\red{Solution:-}}}

Let the fraction be x.

According to 1st condition

if we add 2 to the numerator it reduces 1/2

\bf\frac{x+2}{y}=\frac{1}{2}

\bf:\implies\:(x+2)2=y

\bf:\implies\:y=2x+4............1

According to 2nd condition

If we substract 1 from the fraction it reduces 1/3.

\bf:\implies\:\frac{x}{y-1}=\frac{1}{3}

\bf:\implies\:3x = y-1

\bf:\implies\:x=\frac{y-1}{3}.............2

Now solving equations.

Substituting value of y from 1st equation in equation 2 .

\bf:\implies\:x=\frac{(2x+4)-1}{3}

\bf:\implies\:3x=2x+3

\bf:\implies\:3x-2x=3

\bf:\implies\:{\underline{\boxed{x=3}}}

Putting value of x in equation 1.

\bf:\implies\:y= 2\times3+4

\bf:\implies\:y=6+4

\bf:\implies\:{\underline{\boxed{y=10}}}

\bf:\implies\: Fraction=\frac{3}{10}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions