Math, asked by ameerhamzaasra, 2 months ago

24. If 3tane = 4, find the value of sine and sece​

Answers

Answered by LoverBoy346
0

Step-by-step explanation:

Given = 3 \tan \theta = 4

 \tan \theta =  \frac{3}{4}

 \tan \theta =  \frac{opposite}{adjacent}  =  \frac{3}{4}

By using Pythagoras theorem,

 {H }^{2}  =  { P}^{2}  +  { B }^{2}

 {H }^{2}  =  {3}^{2}  +  {4}^{2}

 {H}^{2}  = 9 + 16

H =  \sqrt{25}

H = 5

 \sec \theta =  \frac{hypotenuse}{adjacent}  =  \frac{5}{4}

 \sin  \theta =  \frac{opposite}{hypotenuse}  =  \frac{3}{5}

Answered by ISAlishaTripathy
1

Answer:

 \sin \: e =  \frac{4}{5}  \: and  \: \sec \: e =  \frac{5}{3}

Step-by-step explanation:

let \: perpendicular \:  = p \\ base = b \\ and \: hypotenuse \:  = h \\ 3 \tan \: e = 4 \\  =  >  \tan \: e =  \frac{4}{3}  =  \frac{p}{b}  \\ let \: p = 4x \\ b = 3x \\  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  =  > h =  \sqrt{ {p}^{2}  +  {b}^{2} }  \\  =  > h =  \sqrt{ {4x}^{2}  +  {3x}^{2} }  \\  =  > h =  \sqrt{16 {x}^{2}  + 9 {x}^{2} }  \\  =  > h =  \sqrt{ {25x}^{2} }  \\  =  > h = 5x \\   \sin \: e =  \frac{p}{h}  =  \frac{4x}{5x}  =  \frac{4}{5}  \\  \sec \: e =  \frac{h}{b}  =  \frac{5x}{3x}  =  \frac{5}{3}

Similar questions