Math, asked by govindersingh440, 2 months ago

24. If ꭤ , β are the roots of the equation 2x² - 6x + k =0 and ꭤ +3 β =9, find the value of k.​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \:  {2x}^{2} - 6x + k = 0

such that

\rm :\longmapsto\: \alpha  + 3 \beta  = 9 -  -  - (1)

Now, we know that

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

\rm :\longmapsto\: \alpha  +  \beta  =  - \dfrac{( - 6)}{2}

\rm :\longmapsto\: \alpha  +  \beta  =3 -  -  -  - (2)

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\:2 \beta  = 6

\rm :\longmapsto\:\beta  = 3

On substituting this value in equation (2), we get

\rm :\longmapsto\: \alpha  +  \beta  = 3

\rm :\longmapsto\: \alpha  +  3  = 3

\rm :\longmapsto\: \alpha   = 0

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: \alpha  \beta  = \dfrac{k}{2}

Now, on substituting the values, we get

\rm :\longmapsto\: 0 \times 3  = \dfrac{k}{2}

\rm :\longmapsto\: 0  = \dfrac{k}{2}

\bf\implies \:k = 0

Additional Information:-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions