24. If I = [sec? 2xdx , then the value of 1 is 4 1) tan x + c 2) tan 2x + c 5 tan 2x 3) + c 4) cot 2 x + c 2
Answers
Answered by
1
Answer:
A
K=−1/3
C
M=−2
Let , I=∫sec
2
xcsc
4
xdx
Using integration by parts ,
I=csc
4
x∫sec
2
xdx−∫
dx
d
(csc
4
x)∫sec
2
xdx
=csc
4
xtanx−∫(−4csc
4
xcotx)tanxdx
=csc
4
xtanx+4∫csc
4
xdx
=csc
4
xtanx+4∫csc
2
xcsc
2
xdx
applying integration by parts again.
=csc
4
xtanx+4[csc
2
x∫csc
2
xdx−∫(−2csc
2
xcotx)(−cotx)dx]
=csc
4
xtanx+4[csc
2
x(−cotx)−2∫csc
2
xcot
2
xdx]
=csc
4
xtanx−4csc
2
xcotx+
3
8
cot
3
x
Substitute , csc
2
x=1+cot
2
x and simplify
Then we get ,
I=−
3
1
cot
3
x+tanx−2cotx+C
Therefore , K=−
3
1
L=1 M=−2
Similar questions